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Abstract Mathematical formalism of the Low Rank Perturbation method (LRP) is
applied to the vibrational isotope effect in the harmonic approximation with a standard
assumption that force field does not change under isotopic substitutions. A pair of two
n-atom isotopic molecules A and B which are identical except for isotopic substitu-
tions at ρ atomic sites is considered. In the LRP approach vibrational frequencies ωk

and normal modes |�k〉 of the isotopomer B are expressed in terms of the vibrational
frequencies νi and normal modes |�i 〉 of the parent molecule A. In those relations
complete specification of the normal modes |�i 〉 is not required. Only amplitudes
〈τ s|�i 〉 at sites τ affected by the isotopic substitutions and in the coordinate direction
s (s = x, y, z) are needed. Out-of-plane vibrations of the (H,D)-benzene isotopomers
are considered. Standard error of the LRP frequencies with respect to the DFT fre-
quencies is on average � ≈ 0.48 cm−1. This error is due to the uncertainty of the
input data (±0.5 cm−1) and in the absence of those uncertainties and in the harmonic
approximation it should disappear. In comparing with experiment, one finds that LRP
frequencies reproduces experimental frequencies of (H,D)-benzene isotopomers bet-
ter (�LRP ≈ 4.74 cm−1) than scaled DFT frequencies (�DFT ≈ 6.79 cm−1) which
are designed to minimize (by frequency scaling technique) this error. In addition,
LRP is conceptually and numerically simple and it also provides a new insight in the
vibrational isotope effect in the harmonic approximation.
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1 Introduction

Molecular vibrations can be relatively well described within the harmonic approxima-
tion [1,2]. In this approximation one uses the classical model of the molecule where the
nuclei are represented by mathematical points with masses [1,3,4]. The displacements
of nuclei from the equilibrium positions can be described with Cartesian coordinates.
If the molecule contains n nuclei, there are 3n such generic coordinates:

ξ1, ξ2, . . . , ξ3n .

In the harmonic approximation [1,3,4] the potential energy is

V =
∑

i< j

fi jξiξ j , (1a)

where fi j = (
∂2V/∂ξi∂ξ j

)
0 are force constants expressed in Cartesian coordinates.

Kinetic energy expressed in terms of Cartesian displacements from equilibrium is

T = 1

2

3n∑

i

mi

(
dξi

dt

)2

. (1b)

The solution of the above system consisting of n masses connected by harmonic
forces leads to the generalized eigenvalue equation

F |�i 〉 = λi M |�i 〉 , (2a)

where F and M are force field and mass operators, respectively. Eigenstates |�i 〉 of
this equation can be orthonormalized according to

〈
�i |M

∣∣� j
〉 = δi j , (2b)

while eigenvalues λi are related to the vibrational frequencies νi by

λi = 4π2ν2
i . (2c)

If in the original molecule A some or all atoms are replaced by an isotope, to a
very high degree of accuracy force field is not affected by those replacements [1,3,4].
In this approximation the modified equation describing isotopically substituted mole-
cule B is

F |�k〉 = εk(M + �M) |�k〉 , (3a)

where operator �M describes isotope mass changes. In analogy to (2b), eigenstates
|�k〉 of (3a) can be orthonormalized according to

〈�k |M + �M |�l 〉 = δkl , (3b)
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while frequencies ωk of B are related to the eigenvalues εk of (3a) by

εk = 4π2ω2
k . (3c)

Eigenstates |�i 〉 and |�k〉 have physical meaning of vibrations or normal modes, and
those terms will be used interchangibly. When the emphasize is on mathematics it is
appropriate to use the term eigenstates, however when the emphasize is on physics it
is more appropriate to use the term vibrations or normal modes.

In a standard treatment Eqs. 2a and 3a are expressed in a mass weighted coordinates
where dependence on molecular masses is absorbed in the definition of related coor-
dinates [1,3,4]. This simplifies mathematical treatment of a single molecule A and/or
a single molecule B [1,3,4]. However, vibrational isotope effect involves changes in
atomic masses from the original molecule A to the isotopomer B. In studding this
effect it is more natural to retain explicit dependence on atomic masses, as this is done
in expressions (2a) and (3a). This also results in a more transparent transition to the
treatment of the vibrational isotope effect by the low rank perturbation (LRP) method
[5–7]. As a consequence of the explicit dependence on atomic masses, normal modes
as defined in a standard treatment slightly differ from normal modes as defined in the
LRP approach. In the standard treatment based on mass weighted coordinates normal

modes
∣∣�∗

i

〉
of the parent molecule A are orthonormalized according to

〈
�∗

i |�∗
j

〉
= δi j ,

while in the LRP approach those normal modes are orthonormalized according to (2b).
Connection between normal modes

∣∣�∗
i

〉
and |�i 〉 is

∣∣�∗
i

〉 = M1/2 |�i 〉. The same
applies to the corresponding normal modes

∣∣�∗
k

〉
and |�k〉 of the isotopomer B. Those

normal modes are related to each other according to
∣∣�∗

k

〉 = (M + �M)1/2 |�k〉.
An arbitrary molecule A containing n atoms has 3n vibrations |�i 〉. In this general

case and in a matrix form Eqs. 2a and 3a are 3n × 3n matrix eigenvalue equations. If
molecule A is linear (nonlinear), among those 3n vibrations there are 5 (6) non-proper
vibrations that correspond to three translations and two (three) rotations. However, if
the molecule is planar, in-plane and out-of-plane vibrations can be treated separately.
In-plane vibrations of the parent molecule A are again described by the eigenvalue
equation of a general type (2a), while in-plane vibrations of the isotopomer B are
described by the eigenvalue equation of a general type (3a). The same applies to the
out-of-plane vibrations. Each planar nonlinear molecule has n out-of-plane and 2n
in-plane-vibrations. Only out-of-plane vibrations of planar molecules will be conside-
red here. Three out-of-plane vibrations of planar molecules are non-proper. One non-
proper vibration is a translation |�T 〉 in the z-direction perpendicular to the molecular
plane, while other two non-proper vibrations are rotations |�Rx 〉 and

∣∣�Ry
〉

around
x- and y-axis which lie in the molecular plane. Remaining n − 3 vibrations are proper
vibrations. As an example, out-of-plane vibrations of (H,D)-benzene isotopomers will
be considered.

2 LRP method

One can solve eigenvalue equation 3a using the LRP method [5,6]. This is a general
mathematical formalism by which one can express the eigenvalues and the eigenstates
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of the modified system B in terms of the eigenvalues and eigenstates of the initial
system A [5–8]. In this respect LRP is similar to a standard perturbation expansion
approach. However, unlike standard perturbation methods, LRP does not rely on any
kind of a power series expansion, and it is reliable however large the operators that
describe the difference between systems A and B, as long as those operators have
finite rank [5,6]. In the Appendices is given an outline of the LRP method as applied
to the vibrational isotope effect in the harmonic approximation. In the LRP approach
one makes a distinction between cardinal and singular eigenvalues and eigenstates
of the modified system B. By definition, an eigenvalue εk of the modified Eq. 3a is
“cardinal” if it differs from all the eigenvalues λi of the initial Eq. 2a. Otherwise it is
singular [6–8]. In other words, εk is cardinal if εk /∈ {λi } and singular if εk ∈ {λi }.

In the case of planar molecules, one can apply LRP approach separately to in-plane
and separately to out-of-plane vibrations. Accordingly, general expressions given in
the Appendix simplify.

Let A be a planar molecule containing n atoms. Put the origin of the coordinate
system in the centre of mass of this molecule and let x- , y- and z-axis coincide with
principal axis of A. Without loss of generality one can choose z-axis to be perpendicular
to the molecular plane and x- and y-axis to lie in this plane. According to lemma 1
(see Appendix), with this choice non-proper vibrations (translations and rotations) of
a molecule A are all mutually orthogonal.

If one replaces ρ ≤ n atoms in molecule A with an isotope, one obtains an isoto-
pomer B. In general, all vibrations of the initial molecule A change. A key quantity in
the LRP description of the modified molecule B is matrix �(ε) with matrix elements
given by the expression (B2a). This matrix depends on a real parameter ε. In a general
case �(ε) is a 3ρ × 3ρ matrix. However, in the case of out-of-plane vibrations of pla-
nar molecules one has to consider only atom displacements in the z-direction. Hence
�(ε) reduces to a ρ × ρ matrix. Using explicit expressions (C4) and since there are
no displacements in the x- and y-directions, one finds [7,8]

�µτ (ε) = 1

ε

[
1

M
+ xµxτ

Iy
+ yµyτ

Ix

]
+

n−3∑

i(λi �=ε)

〈µ|�i 〉 〈�i |τ 〉
ε − λi

, µ, τ = 1, . . . , ρ.

(4)

where M is molecular mass of the molecule A, while Ix and Iy are moments of inertia
of this molecule around x- and y-axis, respectively. Further, xµ and yµ are x- and y-
coordinates of the µ-th isotope atom, 〈µ|�i 〉 is the amplitude of the normalized (out-
of-plane) vibration |�i 〉 of molecule A at the position µ, while λi is the corresponding
eigenvalue related to the frequency νi according to (2c). The summation in the above
expression is performed over all i such that λi �= ε. In particular, if ε /∈ {λi } this
summation is performed over all n − 3 terms. Since all displacements are in the z-
direction, in the above and in the following expressions is used simplified notation
〈µz|�i 〉 ≡ 〈µ|�i 〉, �µz,τ z(ε) ≡ �µτ (ε), etc. (See Appendices).

In the LRP approach [7,8] the solution to the vibrational isotope effect in the
harmonic approximation is given by Theorems 1 and 2 (see Appendix). In the case of
out-of-plane vibrations Theorem 1 reduces to [8].
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Theorem 1a (cardinal out-of-plane vibrations) Let (2a) be the initial isotope eigen-
value equation describing out-of-plane vibrations of planar molecule A. Let further
out-of-plane vibrations |�i 〉 of this molecule be orthonormalized according to (2b).
Then:

(a) εk /∈ {λi } is (cardinal) eigenvalue of the modified isotope eigenvalue equation
3a that describes out-of-plane vibrations of isotopomer B if and only if ε = εk satisfies
matrix equation

[
�(εk) + �M−1

εk

]
C = 0, εk /∈ {λi } , (5a)

where �(ε) is a ρ × ρ matrix with matrix elements (4), while �M−1 is a ρ × ρ

diagonal matrix with matrix elements

�M−1
µτ = δµτ

�mτ

, µ, τ = 1, . . . , ρ, (5b)

and where �mτ is isotope mass change of the atom τ .
According to (5a), each out-of-plane cardinal eigenvalue εk /∈ {λi } of isotopomer

B is a root of a function f (x)

f (ε) =
∣∣∣∣�(ε) + �M−1

ε

∣∣∣∣ . (5c)

(b) Each cardinal out-of-plane vibration |�k〉 of isotopomer B that has eigenvalue
εk /∈ {λi } is a linear combination

|�k〉 = 1

εk

[
T (k) |�T 〉 + R(k)

x |�Rx 〉 + R(k)
y

∣∣�Ry
〉] +

n−3∑

i

∑ρ
τ 〈�i |τ 〉 C (k)

τ

εk − λi
|�i 〉,

(6a)

where |�i 〉 are proper out-of-plane vibrations of the parent molecule A, while |�T 〉,
|�Rx 〉 and

∣∣�Ry
〉

are non-proper vibrations of this molecule, translation in the z-
direction perpendicular to the molecular plane and rotations around in-plane x- and
y-axis, respectively (see Appendix):

|�T 〉 = 1√
M

n∑

α

|α〉, |�Rx 〉 = 1√
Ix

n∑

α

yα |α〉, ∣∣�Ry
〉 = −1√

Iy

n∑

α

xα |α〉,

(6b)
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Coefficients C (k)
τ in (6a) are components of a column vector C(k), eigenvector of

the matrix Eq. 5a, while coefficients T (k), R(k)
x and R(k)

y are [7,8]

T (k) = 1√
M

ρ∑

τ

C (k)
τ , R(k)

x = 1√
Ix

ρ∑

τ

yτ C (k)
τ , R(k)

y = (−1)√
Iy

ρ∑

τ

xτ C (k)
τ , (6c)

(c) Coefficients C (k)
τ that determine cardinal vibration |�k〉 of B satisfy [7,8]

C (k)
τ = −εk 〈τ |�M |�k 〉 = −εk�mτ 〈τ |�k〉 , τ = 1, . . . , ρ. (6d)

(d) Degeneracy of the cardinal eigenvalue εk /∈ {λi } of B equals nullity of the matrix
H(εk) = �(εk) − �M−1/εk .

Note that expressions (6b) imply

M = 1

|〈α|�T 〉|2 , Ix = y2
α

|〈α|�Rx 〉|2
, Iy = x2

α∣∣〈α|�Ry
〉∣∣2 . α = 1, . . . , n. (7)

Global quantities M , Ix and Iy that enter expression (4) can be hence eliminated
and expressed in terms of the amplitudes 〈α|�T 〉, 〈α|�Rx 〉 and

〈
α|�Ry

〉
of non-proper

vibrations |�T 〉, |�Rx 〉 and
∣∣�Ry

〉
at atomic site α. With the exception of those atomic

sites (if any) where the corresponding amplitude vanishes, α can be any atomic site
of parent molecule A. In particular, one can chose α to be an atomic site τ subject to
the isotopic substitution.

According to Theorem 1a, as far as cardinal out-of-plane vibrations are considered,
LRP replaces initial eigenvalue equation 3a acting in the n-dimensional vibrational
space Xn with the Eq. 5a acting in the ρ-dimensional isotope substitution space Xb

ρ ⊆
Xn . If ρ < n, which is usually the case, this results in a substantial reduction of the
computational complexity.

Concerning singular out-of-plane solutions that satisfy εk ∈ {λi }, one may have
two kinds of such solutions: strongly singular and weakly singular. By definition,
strongly singular vibration has no component on all those atoms that are effected by
the isotopic substitutions (i.e. it has no component in isotope substitution space Xb

ρ),
while weakly singular vibration has at least one such non-vanishing component (see
Appendix). One has:

Theorem 2a (singular out-of-plane vibrations) Let λ j be a η j -degenerate out-of-
plane eigenvalue of the parent molecule A and let

∣∣� jl
〉

(l = 1, . . . , η j ) be the cor-
responding out-of-plane vibrations orthonormalized according to (2b). Then:

(a) Each strongly singular vibration of the isotopomer B that has eigenvalue εk = λ j

is a linear combination

|�k〉 =
η j∑

l

D( j)
l

∣∣� jl
〉
, (8a)
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where the coefficients D( j)
l satisfy

η j∑

l

〈
µ|� jl

〉
D( j)

l = 0, µ = 1, . . . , ρ. (8b)

(b) Each weakly singular vibration of B that has eigenvalue εk = λ j is a linear
combination

|�k〉 = 1

λ j

[
T (k) |�T 〉 + R(k)

x |�Rx 〉 + R(k)
y

∣∣�Ry
〉]

+
n−3∑

i(λi �=λ j )

∑ρ
τ 〈�i |τ 〉C (k)

τ

εk − λi
|�i 〉 +

η j∑

l

D( j)
l

∣∣� jl
〉

(9a)

where the coefficients C (k)
τ and D( j)

l satisfy

ρ∑

τ

〈
� jl |τ

〉
C ( j)

τ = 0, l = 1, . . . , η j , C( j) �= 0, (9b)

λ j

ρ∑

τ

�µτ (λ j )C
( j)
τ + C ( j)

µ

�mµ

− 1

�mµ

η j∑

l

〈
µ|� jl

〉
D( j)

l = 0, µ = 1, . . . , ρ, (9c)

and where the coefficients T (k), R(k)
x and R(k)

y are given in terms of the coefficients C (k)
τ

according to (6c). In addition, each weakly singular vibration (9a) must be orthogonal
to all strongly singular vibrations (8a).

(c) Coefficients C ( j)
τ and D( j)

l that determine weakly singular vibration |�k〉
according to (9a) and strongly singular vibration |�k〉 according to (8a) satisfy

C ( j)
τ = −εk 〈τ |�M |�k 〉 = −εk�mτ 〈τ |�k〉 ,

D( j)
l = 〈

� jl
∣∣ M |�k〉 , τ = 1, . . . , ρ, l = 1, . . . , η j . (9d)

According to (9b) weakly singular vibrations satisfy C( j) �= 0, and expressions (9d)
hence imply that those vibrations have a nonzero component in the isotope substitution
space Xb

ρ . On the other hand, strongly singular vibrations satisfies C( j) = 0, and they
have no nonzero component in this space.

Above two theorems produce all out-of-plane vibrations of isotopomer B. Note
that (8b) is a set of ρ homogenous linear equations in η j unknowns D( j)

l . Hence
If η j > ρ one has at least η j − ρ strongly singular vibrations with the eigenvalue
εk = λ j . However, if η j ≤ ρ one has usually no such vibration. An exceptional case
is the case when the eigenvalue εk ≡ λ j is passive, in which case isotopomer B has
maximum possible number of η j strongly singular vibrations |�k〉 with this eigenvalue
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(see Appendices). Concerning weakly singular vibrations, expressions (9b) and (9c)
have usually no solution that satisfies C( j) �= 0, and weakly singular vibrations are
hence exceptionally rare (see Appendices). Accordingly, as far as singular out-of-
plane vibrations are considered, LRP approach essentially replaces n × n eigenvalue
equation 3a with a η j × η j matrix Eq. 8b that describes strongly singular vibrations.
Since usually η j � n, this again results in a substantial reduction of computational
complexity.

Vibrations (6a), (8a) and (9a) are not normalized. If required, those vibrations can
be easily normalized using matrix elements

〈
�i |�M

∣∣� j
〉
and orthonormality relation

(2b) of vibrations |�i 〉 (see Appendices).
In addition to the above two theorems, out-of-plane frequencies νi of the parent

molecule A and out-of-plane frequencies ωi of the isotopomer B satisfy the
Interlacing rule [7–9]. Let κ substituted isotopes be heavier in the isotopomer B,

and let remaining (ρ −κ) substituted isotopes be heavier in the parent molecule A. Let
further νi and ωk be proper out-of-plane frequencies of A and B, respectively. Arrange
those frequencies in a nondecreasing order. Then, these frequencies are interlaced
according to

νk−κ ≤ ωk ≤ νk+ρ−κ , k = κ, κ + 1, κ + 2, . . . , (10a)

where by definition ν0 = 0. Due to (2c) and (3c), the same relation applies to the
corresponding eigenvalues λi and εk .

Interlacing rule (10a) generalizes well known order rule [1–4]. It provides a substan-
tial help for the correct assignment of experimental frequencies to vibrational modes
and it can be efficiently used in order to verify consistency of theoretical and/or experi-
mental out-of-plane frequencies of planar molecules [9]. Interlacing rule (10a) applies
to out-of-plane frequencies of planar molecules. There is a similar rule that applies
to in-plane frequencies of those molecules, and also interlacing rule that applies to
arbitrary (non-planar) molecules [8,9].

In order to obtain frequencies and normal modes of isotopomer B by the LRP
method, no information about force constants is required. According to relations
(4–9), frequencies ωk = √

εk/2π of B depend only on the frequencies νi = √
λi/2π

of the parent molecule A, on the mass changes �mτ of atoms τ that are substituted
by an isotope, on positions (xτ , yτ ) of those atoms, on the amplitudes 〈τ |�i 〉 of the
vibrations |�i 〉 at those atoms, and on three global properties of the parent molecule A:
molecular mass M and moments of inertia Ix and Iy of this molecule. No knowledge
of the amplitudes 〈α|�i 〉 of the vibrations |�i 〉 at atoms α that are not substituted by
an isotope is required. Accordingly, vibrational isotope effect does not depend on any
fine details of molecules A and B outside the region affected by the isotopic substi-
tutions. In particular, frequencies ωk of B do not depend in any direct way on atomic
masses and force constants outside this region. All the potentially huge information
about the molecular structure outside this region is succinctly concentrated into the
global information about frequencies νi of A and about only three global quantities
of this molecule: molecular mass M and two moments of inertia, Ix and Iy . Accor-
ding to the expression (7), dependence on global quantities M , Ix and Iy can be also
eliminated and replaced with dependence on strictly local quantities defined on the
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region subject to the isotopic substitution. In conclusion, the only global quantities on
which frequencies and normal modes of isotopomer B depend are frequencies νi of
the parent molecule A. All other quantities are local in the sense that they all relate to
the region subject to the isotopic substitutions.

What applies to the frequencies ωk , applies also to the vibrations |�k〉 of the isoto-
pomer B. In the LRP approach each such (properly normalized) vibration is expressed
as a linear combination |�k〉 = ∑

i ai |�i 〉 of vibrations |�i 〉 of the parent molecule A.
Expansion coefficients ai depend exactly on the same quantities as frequencies ωk of
this isotopomer. Hence, if one knows matrix elements

〈
�i |O

∣∣� j
〉
of some observable

O between vibrations |�i 〉 of the parent molecule A, using these matrix elements one
can obtain matrix elements 〈�k |O |�l 〉 = ∑

i j a∗
i a j

〈
�i |O

∣∣� j
〉

of this observable
between any two vibrations |�k〉 and |�l〉 of B. For example, if one knows probability
amplitudes for the transitions between vibrations |�i 〉 of a parent molecule A (which
can be obtained, for example, as experimental quantities), one can derive transition
probabilities between vibrations |�k〉 of the isotopomer B. For this it not necessary
to know any details (such as force constants, geometry, atomic masses, amplitudes
〈α|�i 〉, etc.) of the potentially huge region not effected by the isotopic substitutions.

Solution of the vibrational isotope effect by the LRP method usually requires much
less data than solution of this effect in a standard way using eigenvalue equation
3a. Consider as an example a planar molecule B containing 100 atoms which differs
by a single isotopic substitution from the corresponding parent molecule A. In a
standard approach, in order to obtain out-of-plane frequencies of B one has to specify
101 * 100/2 = 5,050 force constants fi j . In addition, one has to know masses of all
100 atoms in this molecule. Accordingly, one has to know 5,150 quantities in order
to specify eigenvalue equation 3a. In the LRP approach one has to know 97 out-of-
plane frequencies νi of the parent molecule A, 97 amplitudes 〈µ|�i 〉 of the proper
vibrations |�i 〉 of this molecule at the position µ of the isotope substitution, three
global quantities, M , Ix and Iy , one isotope mass change �mµ, and the position
(xµ, yµ) of the isotope substitution. This amounts to only 200 quantities. Accordingly,
in this particular case in the LRP approach one has to specify only 200 instead of 5,150
quantities. All remaining quantities are redundant. One can argue that there are many
schemas where one neglects force constants that are sufficiently small, and this can
substantially reduce the number of data required to solve vibrational isotope effect
in the standard way. However, all such schemas are only approximate, and unlike
LRP they can never provide an exact solution of the vibrational isotope effect in the
harmonic approximation.

3 Single isotopic substitution

Consider out-of-plane vibrations of planar molecules A and Bτ which are identical
except for a single isotopic substitution at atomic site τ . Since ρ = 1 expressions
(4–10) simplify. In particular, if molecule Bτ is heavier than molecule A (which can
be assumed without loss of generality) one has κ = 1 and interlacing rule (10a)
simplifies to

0 ≤ ω1 ≤ ν1 ≤ ω2 ≤ ν2 ≤ · · · ≤ ωn−3 ≤ νn−3. (10b)
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According to this expression, a single isotopic substitution in a planar molecule can
change (increase or decrease) degeneracy of each particular out-of-plane frequency ν j

at most by one. For example, if planar molecule A has doubly degenerate frequency
ν j (η j = 2), planar molecule Bτ has at least one and at most three vibrations with this
frequency.

In the case of a single isotopic substitution expressions (5) and (6) describing
cardinal out-of-plane vibrations of Bτ simplify to

f (ε) ≡ 1

ε

[
1

M
+ x2

τ

Iy
+ y2

τ

Ix
+ 1

�mτ

]
+

n−3∑

i

〈τ |�i 〉 〈�i |τ 〉
ε − λi

= 0, ε /∈ {λi } ,

(11a)

|�k〉 = 1

εk

[
1√
M

|�T 〉 + yτ√
Ix

|�Rx 〉 − xτ√
Iy

∣∣�Ry
〉
]

+
n−3∑

i

〈�i |τ 〉
εk − λi

|�i 〉.

(11b)

In the above expressions �mτ is the isotope mass change of the atom τ , (xτ , yτ )
is its coordinate position, while 〈�i |τ 〉 are amplitudes of the out-of-plane vibrations
|�i 〉 at this atom.

Each root ε = εk /∈ {λi } of (11a) is a (cardinal) out-of-plane eigenvalue of the
isotopomer Bτ . Once ε = εk is obtained as a root of (11a), the corresponding vibration
|�k〉 is given by (11b). Unlike in a general case of multiple isotopic substitutions
(expressions (5–6)), in a case of a single isotopic substitution each cardinal vibration
|�k〉 is nondegenerate, i.e. there is only one out-of-plane vibration |�k〉 of Bτ with
the eigenvalue εk /∈ {λi }.

Consider now singular solutions of Bτ . Each strongly singular vibration |�k〉 that
corresponds to the eigenvalue εk ≡ λ j is a linear combination (8a) where coefficients

D( j)
l satisfy (8b). In the case of single isotopic substitution ρ conditions (8b) reduce

to a single condition

η j∑

l

〈
τ |� jl

〉
D( j)

l = 0. (12)

If all η j amplitudes
〈
τ |� jl

〉
(l = 1, . . . , η j ) vanish, eigenvalue εk ≡ λ j is passive

(see Appendices), and in this case one has η j strongly singular out-of-plane vibrations
with this eigenvalue. Otherwise (eigenvalue εk ≡ λ j is active) one has η j − 1 such
vibrations. In particular, if λ j is nondegenerate (η j = 1) and if

〈
τ |� j

〉 �= 0, then there
is no strongly singular vibration with this eigenvalue.

Concerning weakly singular solutions, in the case of a single isotopic substitution
expressions (9b) reduce to

〈
� jl |τ

〉
C ( j)

τ = 0 (l = 1, . . . , η j ). Since C ( j)
τ �= 0, this

implies
〈
� jl |τ

〉 = 0 for each l = 1, . . . , η j . Accordingly, expressions (9b) and (9c)
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reduce to

〈
� jl |τ

〉 = 0, l = 1, . . . , η j , (13a)

λ j�ττ (λ j ) + 1

�mτ

= 0. (13b)

The corresponding weakly singular eigenstate is

|�k〉 = 1

λ j

[
1√
M

|�T 〉 + yτ√
Ix

|�Rx 〉 − xτ√
Iy

∣∣�Ry
〉
]

+
n−3∑

i(λi �=λ j )

〈�i |τ 〉
εk − λi

|�i 〉.

(13c)

Thus isotopomer Bτ has weakly singular vibration with the eigenvalue εk ≡ λ j if
and only if all amplitudes

〈
� jl |τ

〉
(l = 1, . . . , η j ) vanish (i.e. if the eigenvalue λ j is

passive) and if in addition this eigenvalue satisfies (13b). This is exceptionally rare
situation. However if this is the case, the corresponding eigenstate is given by (13c).
In addition, in this case each eigenstate

∣∣� jl
〉
(l = 1, . . . , η j ) of A is at the same time

a strongly singular eigenstate of Bτ .
In conclusion, if the eigenvalue εk ≡ λ j is active, isotopomer Bτ has η j − 1 stron-

gly singular vibrations with this eigenvalue, and no weakly singular vibration with
this eigenvalue. In this case introduction of a single isotope in molecule A decreases
degeneracy of the eigenvalue λ j by one. In particular, if λ j is nondegenerate (η j = 1)
isotopomer Bτ has no singular solution with this eigenvalue. If however eigenvalue
εk ≡ λ j is passive, vibrations

∣∣� jl
〉

are not effected by isotopic substitution and iso-
topomer Bτ has η j strongly singular vibrations with this eigenvalue. Those vibrations
coincide with vibrations

∣∣� jl
〉
of the parent molecule A. There are additional two pos-

sibilities. If λ j does not satisfy (13b),
∣∣� jl

〉
are the only singular vibrations associated

with this eigenvalue, and in this case introduction of a single isotope does not change
degeneracy of the initial eigenvalue λ j . However, if λ j satisfies (13b), isotopomer
Bτ has in addition to strongly singular vibrations a single weakly singular vibration
(13c) that has this eigenvalue. If this is the case, introduction of a single isotope in a
parent molecule A at a position τ increases degeneracy of the eigenvalue λ j by one.
All above possibilities are in accord with the interlacing rule (10b).

Solution of the vibrational isotope effect in the case of the single isotopic substitu-
tion demonstrates efficiency of the LRP approach. In a standard approach one has to
diagonalize potentially huge eigenvalue equation 3a. In the LRP approach this equa-
tion is essentially replaced with the expressions (11) which produce all cardinal solu-
tions. Expressions (12–13) which produce singular solutions are in most cases much
less important. It is usually much easier to find roots of the function (11a) (which
produces all cardinal frequencies), than to diagonalize potentially huge eigenvalue
equation 3a.
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3.1 Inversion relations

Since (11a) is satisfied for each cardinal eigenvalue ε = εk , this implies matrix equation
[7,8]

A� = X. (14a)

where A is matrix with matrix elements Aki while X and � are column vectors with
components Xk and �i , respectively

Aki = 1

εk − λi
, Xk = − 1

εk

[
1

M
+ x2

τ

Iy
+ y2

τ

Ix
+ 1

�mτ

]
, (14b)

� j =
η j∑

l

〈
τ |� jl

〉 〈
� jl |τ

〉
. (14c)

Usually isotopomer Bτ contains no passive eigenvalues. In this case in the above
expressions quantities εk /∈ {λi } are cardinal eigenvalues of Bτ , while each eigenvalue
λi of A is taken only once (i.e. disregarding possible degeneracies). Accordingly, sum-
mation in (14c) is over all degenerate vibrations |�il〉 associated with the eigenvalue
λ j . If however a particular eigenvalue εk ≡ λ j is passive one has � j = 0, and in
this case the corresponding eigenvalue λ j should be excluded from the definition of
matrix elements Aki in (14b) [8]. In both cases (with and without passive eigenvalues)
eigenvalues εk and λi that define matrix A are mutually distinct.

From (14) one derives inversion relation [7,8]

� = A−1X. (15)

For this relation to apply, A must be an invertible square matrix. One finds that this
is almost always the case.

Using inversion relation (15), one can derive squares of the amplitudes 〈τ |�i 〉 at the
substitution site τ (more precisely, if λi is degenerate, sum �i of such squares) from the
known eigenvalues λi and εk which define matrix elements Aki , and from quantities M ,
Ix , (xτ , yτ ) and �mτ . According to (2c) and (3c), eigenvalues λi and εk are determined
by the out-of-plane frequencies of molecules A and Bτ , respectively. All remaining
quantities are determined by the geometry and atomic masses of molecules A and
Bτ . In conclusion, using expression (15), one can derive squares of the amplitudes
〈τ |�i 〉 at the substitution site τ from well known properties of molecules A and
Bτ . Those properties can be taken as some reliable theoretical data, and/or as some
reliable experimental quantities. Using several substitution sites τ (i.e. several different
isotopomers Bτ ), one can reconstruct amplitude squares at all those substitution sites.
According to theorems (1a) and (2a), eigenvalues εk and corresponding vibrations
|�k〉 of isotopomer B which differs from A by multiple isotopic substitutions are
determined by amplitudes 〈µ|�i 〉 of the vibrations |�i 〉 of A at all those substitution
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sites. Expression (15) produces squares of amplitudes 〈τ |�i 〉, not those amplitudes.
However, since all proper vibrations |�i 〉 are orthogonal to non-proper vibrations
|�T 〉, |�Rx 〉 and

∣∣�Ry
〉
, and since in addition those vibrations are mutually orthogonal,

those orthogonality requirements in most cases uniquely determine all relative phases
of amplitudes 〈τ |�i 〉 [7,8].

In conclusion, if one knows out-of-plane frequencies of planar molecule A and
out-of-plane frequencies of several mono-substituted isotopomers Bτ s (s = 1, 2, . . .)
involving several substitution sites τ1, τ2, . . ., one can derive amplitudes 〈τ1|�i 〉,
〈τ2|�i 〉, …, of the vibrations |�i 〉 of A at all those substitution sites. Once those
amplitudes and out-of-plane frequencies of a parent molecule A are known, one can
derive out-of-plane frequencies and corresponding vibrations for all isotopomers B
that contain substituted isotopes at thus selected substitution sites τs . The only addi-
tional information which is required in order to obtain frequencies and vibrations of
isotopomer B is molecular mass M and moments of inertia Ix and Iy of the parent
molecule A, as well as information about substituted isotopes: coordinate positions
(xτ s, yτ s) and mass changes �mτ s (s = 1, 2, . . .) of those isotopes. Note in particular
that in order to derive frequencies and vibrations of isotopomer B, no information
about force field either of the parent molecule A or of this isotopomer is required.

If a parent molecule A has some symmetry (in addition to being planar) ampli-
tudes 〈τ |�i 〉 can be partly or completely determined by this symmetry. For example,
ethen (C2H4) has three out-of-plane vibrations |�i 〉. Each of those vibrations has six
amplitudes, two amplitudes at two carbon atoms and another four at four hydrogen
atoms. However, all those amplitudes are completely determined by the symmetry [8].
LRP treatment of ethen is hence extremely simple, and one can derive all out-of-plane
frequencies and corresponding vibrations of all ethen isotopomers using only three
ethen out-of-plane frequencies [8]. In some other cases, such as various haloeten, this
reduction may be only partial [7]. In general, whenever a planar molecule has some
symmetry, this symmetry efficiently reduces the dimension of matrix A and vectors
� and X that are involved in the construction of the inversion relation (15). Quantities
A, X and � obtained in this way are accordingly modified, and they differ from their
generic form (14).

4 Out-of-plane vibrations of (H,D)-benzene isotopomers

Benzene is a planar molecule with n = 12 atoms. It is shown in Fig. 1. In the
literature one finds various data for the benzene equilibrium geometry [3,10,11].
Thus one has rCH = 1.08880 Å and rCC = 1.40307 Å(B3LYP/DZP calculation [10]),
rCH = 1.08183 Å and rCC = 1.39144 Å (B3LYP/TZ2P calculation [10]), rCH = 1.0813
(10) Å and rCC = 1.3937(10) Å, coupled cluster CCSD(T) calculation [11], etc. In this
paper equilibrium geometry from Ref. [3] is used

rCH = 1.0897Å, rCC = 1.4000Å, (16a)

while atom masses are taken from Ref. [12]
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Fig. 1 Atom numbering and
coordinate system of benzene
molecule

x

y

H1

C1 H2

C2

H3

H4

H5

H6

C3C4

C5

C6

mC = 12.0107u m H = 1.007825u, m D = 2.0141018 u, (16b)

Note that mC is atomic mass of a natural mixture of 98.93% of 12C (atomic mass
12.0000 u) and of 1.07% of 13C (atomic mass 13.00335 u [12]).

Above data imply

M = 78.11115u, Ix = Iy = 89.36425 u
(
Å

)2
. (16c)

Benzene (H,D)-isotopomers are shown in Fig. 2. There are 13 such isotopomers. Isoto-
pomers connected by an arrow differ from each other by a single isotopic substitution.
In the harmonic approximation out-of-plane frequencies of all such isotopomer pairs
satisfy interlacing rule (10b). This property can be used in order to test whether a
particular model is in accord with a harmonic approximation.

Wu and Cremer [13] derived all vibrational frequencies for all (H,D)-benzene iso-
topomers using density functional theory (DFT) with the hybrid functional B3LYP
[14–16] and Pople’s 6-31G(d,p) basis set [17]. This is a rather sophisticated DFT
approach which required extensive calculation at the supercomputers of the Nationellt
Superdatorcentrum (NSC) Linköping, Sweden [13]. In order to calculate vibratio-
nal isotope effect one can use other approaches such as MP2 or HF theory [18,19].
However, vibrational analysis by the DFT method, in particular the B3LYP density
functional, is superior to those alternant approaches [20]. Therefore LRP approach
will be compared here with DFT approach.

Since n = 12, each benzene isotopomer has 9 out-of-plane vibrations. In Table 1
are shown DFT out-of-plane frequencies for d0- and d1-benzene [13]. Benzene out-
of-plane vibrations, arranged in the order of increasing frequency, are shown in Fig.
3. Thus vibration |�9〉 in this figure has the largest frequency, while vibrations |�1〉
and |�2〉 which are mutually degenerate have lowest frequency. In order to simplify
presentation of out-of-plane vibrations, notation in this figure differs from the standard
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DD

D2
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12 13

1 D0 and D1

D5 and D6

Fig. 2 Benzene (H,D)-isotopomers. In the harmonic approximation out-of-plane frequencies of isotopomer
pairs connected by an arrow satisfy interlacing rule (10b)

notation [4]. This standard notation is also shown in Fig. 3. For example, in a standard
notation vibration |�1〉 is vibration |ν16b〉, vibration |�2〉 is vibration |ν16a〉, etc.

4.1 Amplitudes of out-of-plane benzene vibrations

Symmetry constrains partially or complete determine all benzene out-of-plane vibra-
tions. Vibration |�3〉 ≡ |ν11〉 is the only vibration of a symmetry type a2u . This
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Table 1 DFT out-of-plane
frequencies of d0- and
d1-benzene

B3LYP/6-31G(d,p) calculation
[13]. All frequencies in cm−1

1 2
C6H6 C6DH5
D6h C2v

1 e2u 414 b2 393
2 e2u 414 a2 414
3 a2u 694 b2 622
4 b2g 718 b2 714
5 e1g 865 b2 792
6 e1g 865 a2 865
7 e2u 974 b2 934
8 e2u 974 a2 974
9 b2g 1,013 b2 1,003

+

-
-
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+

+

+

-
-
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--
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+ +
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+

+
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+
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+

+
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+
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+

+

+
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+
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Fig. 3 Benzene out-of-plane normal modes arranged in the order of increasing frequency
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vibration is hence completely determined by the symmetry. Orthonormality condi-
tions (2b) imply

〈�3|M |�3 〉 ≡ 6m H 〈H1|�3〉2 + 6mC 〈C1|�3〉2 = 1, (17a)

〈�3|M |�T 〉 ∝ m H 〈H1|�3〉 + mC 〈C1|�3〉 = 0. (17b)

where 〈H1|�3〉 is the amplitude of the vibration |�3〉 at the position of the hydrogen
atom H1, while 〈C1|�3〉 is the amplitude of this vibration at the position of the carbon
atom C1. Symbol ∝ in (17b) denotes proportionality. Expressions (17) imply

〈H1|�3〉 = −
√

mC

m H M
, 〈C1|�3〉 =

√
m H

mC M
, (18a)

Using (16) one finds

〈H1|�3〉 = −0.39060, 〈C1|�3〉 = 0.03278. (18b)

By symmetry one has 〈Hα|�3〉 = 〈H1|�3〉 and 〈Cα|�3〉 = 〈C1|�3〉 for each
α = 2, . . . 6. This determines all amplitudes of the out-of-plane vibration |�3〉. The
signs in expressions (18) are chosen in accord with vibration |�3〉 as shown in Fig. 3.
There is no absolute meaning of a global sign of a particular vibration |�i 〉. However,
for each vibration |�i 〉 relative signs of various amplitudes 〈Hα|�i 〉 and 〈Cα|�i 〉
(α = 1, . . . , 6) are well defined and they should be in accord with amplitudes as
shown in Fig. 3.

There are two vibrations of a symmetry type e1g which are mutually degenerate.
Those are vibrations |�5〉 and |�6〉. Concerning vibration |�6〉 one has

〈H1|�6〉 = 0, 〈C1|�6〉 = 0, (19a)

〈�6|M |�6 〉 ≡ 4m H 〈H2|�6〉2 + 4mC 〈C2|�6〉2 = 1, (19b)

〈
�6|M

∣∣�Ry
〉 ∝ m H xH2 〈H2|�6〉 + mC xC2 〈C2|�6〉 = 0. (19c)

Relation (19c) expresses the condition that during the vibration |�6〉 there is no
rotation around y-axis. Above expressions imply

〈H2|�6〉 = − 1

2

√

m H

(
1 + m H x2

H2
mC x2

C2

) , 〈C2|�6〉 = 1

2

√

mC

(
1 + mC x2

C2
m H x2

H2

) .

(20a)
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Using (16) one finds

〈H2|�6〉 = −0.44276, 〈C2|�6〉 = 0.06607. (20b)

By symmetry this fixes all other amplitudes of the vibration |�6〉.
Degenerate vibration |�5〉 is a linear combination of two �6-type vibrations. One

finds |�5〉 = γ (|�6(2)〉 + |�6(3)〉) where γ is unknown constant, |�6(2)〉 is vibra-
tion |�6〉 rotated in a positive sense by π/3, while |�6(3)〉 is vibration |�6〉 rotated
in a positive sense by 2π/3. Accordingly, vibration |�6(2)〉 has zero amplitudes at
atoms H2, C2, C5 and H5, while vibration |�6(3)〉 has zero amplitudes at atoms H3,
C3, C6 and H6 (see Figs. 1 and 3). One finds

〈H1|�6(2)〉 = − 〈H2|�6〉 , 〈H2|�6(2)〉 = 0,

〈C1|�6(2)〉 = − 〈C2|�6〉 , 〈C2|�6(2)〉 = 0,

〈H1|�6(3)〉 = − 〈H2|�6〉 , 〈H2|�6(3)〉 = − 〈H2|�6〉 ,

〈C1|�6(3)〉 = − 〈C2|�6〉 , 〈C2|�6(3)〉 = − 〈C2|�6〉 . (21)

while normalization condition 〈�5|M |�5 〉 = 1 reads

2m H 〈H1|�5〉2 + 2mC 〈C1|�5〉2 + 4m H 〈H2|�5〉2 + 4mC 〈C2|�5〉2 = 1.

Inserting |�5〉 = γ (|�6(2)〉 + |�6(3)〉) into this expression and using (20a) and (21)
one finds

γ 2 = 1

12
(
m H 〈H2|�6〉2 + mC 〈C2|�6〉2) = 1/3.

Hence

|�5〉 = 1√
3

(|�6(2)〉 + |�6(3)〉) . (22)

Expressions (20) and (21) now determine all amplitude of the vibration |�5〉:

〈H1|�5〉 = − 2√
3

〈H2|�6〉 = 0.51126, 〈H2|�5〉 = 0.5 〈H1|�5〉 = 0.25563,

〈C1|�5〉 = − 2√
3

〈C2|�6〉 = −0.07629, 〈C2|�5〉 = 0.5 〈C1|�5〉 = −0.03815.

(23)

and by symmetry for all remaining amplitudes on H and C atoms.
In accord with (2b), vibrations |�5〉 and |�6〉 defined by amplitudes (20) and (23)

are normalized and mutually orthogonal:

〈�5|M |�5 〉 = 〈�6|M |�6 〉 = 1, 〈�5|M |�6 〉 = 0.
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Consider next vibrations |�4〉 and |�9〉 which are of a symmetry type b2g . Require-
ments (2b) imply

〈�4|M |�4 〉 ≡ 6m H 〈H1|�4〉2 + 6mC 〈C1|�4〉2 = 1, (24a)

〈�9|M |�9 〉 ≡ 6m H 〈H1|�9〉2 + 6mC 〈C1|�9〉2 = 1, (24b)

〈�4|M |�9 〉 ∝ m H 〈H1|�4〉 〈H1|�9〉 + mC 〈C1|�4〉 〈C1|�9〉 = 0. (24c)

Those are three conditions in four unknowns. One can choose one amplitude and
express remaining three amplitudes in terms of this amplitude. As a particular choice
use amplitude 〈H1|�4〉. With this choice one has

〈C1|�4〉 =
√

1 − 6m H 〈H1|�4〉2

6mC
, 〈H1|�9〉 = −

√
1 − 6m H 〈H1|�4〉2

6m H
,

〈C1|�9〉 =
√

m H

mC
〈H1|�4〉 . (25)

Symmetry determines all remaining amplitudes of the out-of-plane vibrations |�4〉
and |�9〉. Each of those amplitudes can be expressed in terms of the above three
amplitudes, and hence ultimately in terms of the amplitude 〈H1|�4〉. For example one
has 〈H2|�4〉 = − 〈H1|�4〉, 〈C2|�4〉 = − 〈C1|�4〉, 〈H2|�9〉 = − 〈H1|�9〉, etc.

Vibrations |�1〉, |�2〉, |�7〉 and |�8〉 are of a symmetry type e2u . Since |�1〉 and
|�2〉 are mutually degenerate, vibration |�1〉 is a linear combination of two |�2〉-type
vibrations. Similarly, since |�7〉 and |�8〉 are mutually degenerate, vibration |�7〉 is
a linear combination of two |�8〉-type vibrations. In analogy to (22) one finds

|�1〉 = 1√
3

(|�2(3)〉 − |�2(2)〉) . (26a)

|�7〉 = 1√
3

(|�8(3)〉 − |�8(2)〉) . (26b)

where |�2(2)〉 is a vibration |�2〉 rotated in a positive sense by π/3, while |�2(3)〉 is
a vibration |�2〉 rotated in a positive sense by 2π/3, and analogously for vibrations
|�8(2)〉 and |�8(3)〉. Hence

〈H1|�2(2)〉 = − 〈H1|�2(3)〉 = 〈H2|�2(3)〉 = − 〈H2|�2〉 , 〈H2|�2(2)〉 = 0,

〈H1|�8(2)〉 = − 〈H1|�8(3)〉 = 〈H2|�8(3)〉 = − 〈H2|�8〉 , 〈H2|�8(2)〉 = 0,

(27a)
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〈C1|�2(2)〉 = − 〈C1|�2(3)〉 = 〈C2|�2(3)〉 = − 〈C2|�2〉 , 〈C2|�2(2)〉 = 0,

〈C1|�8(2)〉 = − 〈C1|�8(3)〉 = 〈C2|�8(3)〉 = − 〈C2|�8〉 , 〈C2|�8(2)〉 = 0,

(27b)

Further, orthonormality conditions (2b) imply

4m H 〈H2|�2〉2 + 4mC 〈C2|�2〉2 = 1,

4m H 〈H2|�8〉2 + 4mC 〈C2|�8〉2 = 1,

m H 〈H2|�8〉 〈H2|�2〉 + mC 〈C2|�8〉 〈C2|�2〉 = 0.

and similarly for the vibrations |�1〉 and |�7〉. Using above relations one can express
all amplitudes of vibrations |�1〉, |�2〉, |�7〉 and |�8〉 in terms of only one amplitude.
With the choice of the amplitude 〈H1|�1〉 one finds

〈C1|�1〉 =
√

1 − 3m H 〈H1|�1〉2

3mC
, 〈H2|�1〉 = −0.5 〈H1|�1〉 ,

〈C2|�1〉 = −0.5 〈C1|�1〉 , 〈H1|�2〉 = 〈C1|�2〉 = 0,

〈H2|�2〉 =
√

3

2
〈H1|�1〉 , 〈C2|�2〉 =

√
3

2
〈C1|�1〉 , (28a)

〈H1|�7〉 = −
√

1 − 3m H 〈H1|�1〉2

3m H
, 〈H2|�7〉 = −0.5 〈H1|�7〉 ,

〈C1|�7〉 =
√

m H

mC
〈H1|�1〉 , 〈C2|�7〉 = −0.5 〈C1|�7〉 , (28b)

〈H1|�8〉 = 〈C1|�8〉 = 0, 〈H2|�8〉 = −
√

1 − 3m H 〈H1|�1〉2

4m H
,

〈C2|�8〉 =
√

3m H

4mC
〈H1|�1〉 . (28c)

By symmetry, expressions (28) determine all remaining amplitudes of those vibra-
tions. For example, one has 〈H3|�1〉 = 〈H2|�1〉, 〈C3|�1〉 = 〈C2|�1〉, 〈H3|�2〉 =
− 〈H2|�2〉 etc. (see Fig. 3).

This completes determination of benzene out-of-plane vibrations. Expressions (18),
(20) and (23) uniquely fix vibrations |�3〉, |�6〉 and |�5〉. Expressions (25) and (28)
express all amplitudes of the remaining 6 vibrations in terms of only two amplitudes,
〈H1|�4〉 and 〈H1|�1〉.
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4.2 d0-Benzene vibrations and d1-benzene frequencies

According to (12), since d0-benzene frequencies ν1 = ν2, ν5 = ν6 and ν7 = ν8
are doubly degenerate, d1-benzene has three strongly singular vibrations with those
frequencies. Without loss of generality one can place deuterium at the benzene H1
position. Since 〈H1|�2〉 = 〈H1|�6〉 = 〈H1|�8〉 = 0, with this choice d0-benzene
vibrations |�2〉, |�6〉 and |�8〉 are at the same time d1-benzene strongly singular
vibrations. There are no weakly singular vibrations, and remaining six out-of-plane
d1-benzene vibrations are hence cardinal. Corresponding eigenvalues are roots of the
expression (11a) which reads

f (ε) ≡ 〈H1|�1〉2

ε − λ1
+ 〈H1|�3〉2

ε − λ3
+ 〈H1|�4〉2

ε − λ4
+ 〈H1|�5〉2

ε − λ5
+ 〈H1|�7〉2

ε − λ7
+ 〈H1|�9〉2

ε − λ9

+1

ε

[
1

M
+ y2

H1

Ix
+ 1

�m

]
= 0 (29)

Using (25) and (28b) one can eliminate amplitudes 〈H1|�9〉 and 〈H1|�7〉 from this
expression to obtain

[
1

ε − λ1
− 1

ε − λ7

]
〈H1|�1〉2 +

[
1

ε − λ4
− 1

ε − λ9

]
〈H1|�4〉2 = g(ε), (30a)

where

g(ε) = −1

ε

[
1

M
+ y2

H1

Ix
+ 1

�m

]
− 〈H1|�3〉2

ε − λ3
− 〈H1|�5〉2

ε − λ5

− 1

3m H (ε − λ7)
− 1

6m H (ε − λ9)
. (30b)

Amplitudes 〈H1|�3〉 and 〈H1|�5〉 are given by (18) and (23), respectively. Function
g(ε) hence depends only on a parameter ε, since all other quantities in the expression
(30b) are known (y-coordinate yH1 of the hydrogen atom H1, isotope mass change
�m ≡ m D − m H , etc.).

Expression (30a) should be satisfied for each cardinal eigenvalue εk = 4π2ω2
k of

d1-benzene. There are six such eigenvalues. One can choose any two of those six
eigenvalues to fix unknowns 〈H1|�1〉 and 〈H1|�4〉. Once 〈H1|�1〉 and 〈H1|�4〉 are
known, one can derive remaining four cardinal eigenvalues as (remaining) roots of
(30a).

Let x1 = εk1 and x2 = εk2 be a particular choice of two cardinal eigenvalues εk .
According to (30), those eigenvalues satisfy matrix equation A� = X where A is a
2 × 2 matrix while � and X are two-component column vectors:

Ai,1 = 1

xi − λ1
− 1

xi − λ7
, Ai,2 = 1

xi − λ4
− 1

xi − λ9
,

�1 = 〈H1|�1〉2 , �2 = 〈H1|�4〉2 , Xi = g(xi ), i = 1, 2. (31)
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Above quantities satisfy a 2 × 2 inversion relation (15). Original 6 × 6 inversion
relation that involves 6 cardinal out-of-plane vibrations of d1-benzene is thus reduced
to a much simpler 2 × 2 inversion relation. Using this relation, each choice (ωk1, ωk2)
of two d1-benzene cardinal out-of-plane frequencies determines amplitudes 〈H1|�1〉
and 〈H1|�4〉. With a choice ω1 = 393 cm−1 and ω3 = 622 cm−1 of d1-frequencies
one obtains

〈H1|�1〉 = 0.30583, 〈H1|�4〉 = 0.17971, (32a)

Amplitudes of benzene vibrations |�3〉, |�5〉 and |�6〉 are fixed by symmetry and
those amplitudes are given by expressions (18), (20) and (23). Once amplitudes (32a)
are known, expressions (25) and (28) determine all remaining benzene amplitudes of
vibrations |�1〉, |�2〉, |�4〉, |�7〉, |�8〉 and |�9〉:

〈H2|�1〉 = −0.15291, 〈C1|�1〉 = 0.14108, 〈C2|�1〉 = −0.07054,

〈H2|�2〉 = 0.26485, 〈C2|�2〉 = 0.12218, 〈C1|�4〉 = 0.10567,

〈H1|�7〉 = −0.48705, 〈H2|�7〉 = 0.24352, 〈C1|�7〉 = 0.08859,

〈C2|�7〉 = −0.04429, 〈H2|�8〉 = −0.42180, 〈C2|�8〉 = 0.07672

〈H1|�9〉 = −0.36480, 〈C1|�9〉 = 0.05206. (32b)

Remaining amplitudes of those vibrations are determined by symmetry (see Fig. 3).
According to theorems 1a and 1b, once above amplitudes are known, this determines
all frequencies and vibrations of all benzene isotopomers. Amplitudes (32) are obtai-
ned from a particular choice ω1 = 393 cm−1 and ω3 = 622 cm−1 of two DFT
d1-frequencies. Each such choice produces slightly different result.

In conclusion, given six d0-benzene out-of-plane frequencies νi and a choice
(ωk1, ωk2) of any two d1-benzene out-of-plane cardinal frequencies, this determines
all out-of-plane frequencies and vibrations of all benzene isotopomers. From those
frequencies one first obtains d0-benzene amplitudes 〈H1|�1〉 and 〈H1|�4〉 using the
inversion relation (15) with quantities A, X and � as defined by (31). Once those
amplitudes are known, one obtains remaining four cardinal out-of-plane frequencies
of d1–benzene from the roots εk of (30). Due to small uncertainties in input fre-
quencies νi and (ωk1, ωk2), d0-benzene amplitudes 〈H1|�1〉 and 〈H1|�4〉 as well as
d1-benzene frequencies obtained in this way slightly differ for various choices of
d1-frequencies (ωk1, ωk2). Amplitudes 〈H1|�1〉 and 〈H1|�4〉 obtained in this way for
all possible choices of (ωk1, ωk2) are shown in Table 2. Variations of those ampli-
tudes are relatively small with average amplitudes 〈H1|�1〉avr = 0.30667 ± 0.0016
and 〈H1|�4〉 = 0.17896 ± 0.0037. The corresponding d1–benzene frequencies are
shown in Table 3. In the first column of this table are DFT d1-frequencies [13], and
in the remaining columns are LRP frequencies. DFT d1-frequencies (ωk1, ωk2) which
are used as input data are emphasized with bold figures. For example, in the second
column DFT frequencies ω1 = 393 cm−1 and ω3 = 622 cm−1 of d1-benzene are
used in order to obtain LRP frequencies for the remaining four cardinal vibrations
of d1-benzene. Standard deviation of thus obtained cardinal frequencies from the
“exact” DFT frequencies is also shown and in this case it equals � = 0.26 cm−1. This
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Table 2 LRP amplitudes 〈H1|�1〉 and 〈H1|�4〉 of benzene vibrations |�1〉 and |�4〉 for various choices
of two d1-benzene frequencies

Comb.a 1–3 1–4 1–5 1–7 1–9 3–4 3–5 3–7

〈H1|�1〉 0.30583 0.30575 0.30593 0.30572 0.30590 0.30838 0.30347 0.30717
〈H1|�4〉 0.17971 0.18404 0.17355 0.18582 0.17490 0.18487 0.17553 0.18206

Comb.a 3–9 4–5 4–7 4–9 5–7 5–9 7–9 Average

〈H1|�1〉 0.30189 0.29322 0.30640 0.32423 0.31214 0.30492 0.30917 0.30667 ± 0.0016
〈H1|�4〉 0.17270 0.18342 0.18407 0.18500 0.16835 0.17436 0.17670 0.17896 ± 0.0037
a Particular choice of two DFT d1-benzene cardinal frequencies

Table 3 LRP cardinal frequencies of out-of-plane vibrations of d1-benzene

C6DH5 1–3 1–4 1–5 1–7 1–9 3–4 3–5
ωk � = 0.26 � = 0.43 � = 0.30 � = 0.51 � = 0.26 � = 0.51 � = 0.30

1 393a 393.00a 393.00a 393.00a 393.00a 393.00a 392.68 393.29
3 622a 622.00a 621.74 622.36 621.63 622.28 622.00a 622.00a

4 714a 714.16 714.00a 714.37 713.94 714.33 714.00a 714.30
5 792a 792.46 792.78 792.00a 792.92 792.10 792.95 792.00a

7 934a 933.84 933.95 933.68 934.00a 933.72 934.15 933.56
9 1,003a 1,003.11 1,003.21 1,002.97 1,003.25 1,003.00a 1,003.18 1,003.04

3–7 3–9 4–5 4–7 4–9 5–7 5–9 7–9
� = 0.38 � = 0.47 � = 1.16 � = 0.44 � = 1.83 � = 0.80 � = 0.28 � = 0.41

1 392.83 393.49 394.49 392.92 390.74 392.26 393.12 392.60
3 622.00a 622.00a 620.52 621.80 623.57 623.27 622.21 622.51
4 714.07 714.40 714.00a 714.00a 714.00a 714.57 714.34 714.27
5 792.72 791.69 792.00a 792.82 793.99 792.00a 792.00a 792.43
7 934.00a 933.37 933.06 934.00a 935.37 934.00a 933.63 934.00a

9 1,003.15 1,003.00a 1,003.34 1,003.20 1,003.00a 1,002.78 1,003.00a 1,003.00a

Two such frequencies are treated as input (emphasized in bold). Other four frequencies are then calculated.
Input frequencies are DFT frequencies [13]. All frequencies in cm−1

a DFT frequencies. B3LYP/6-31G(d,p) calculation [13]

standard deviation is normalized to four quantities, i.e. it excludes three strongly
singular frequencies ω2 = ν2 = 414 cm−1, ω6 = ν6 = 865 cm−1 and ω8 = ν8 =
974 cm−1 which are exact and the two cardinal frequencies which are used in order to
derive remaining four cardinal frequencies (in this case frequencies ω1 = 393 cm−1

and ω3 = 622 cm−1). Other columns contain other possible combinations. In all cases
LRP reproduces DFT frequencies with high precision. On average, standard deviations
between two sets of data is of the order � ≈ 0.59 cm−1. The agreement is not exact,
since DFT frequencies in ref. [13] are reported only up to 1 cm−1, and hence those
frequencies are reliable up to ±0.5 cm−1. Since LRP uses six d0-benzene and two
d1-benzene DFT frequencies as input data, this error propagates and it is reflected
as slight discrepancy between four remaining DFT d1- and LRP d1-frequencies. In
addition, there is a possible difference in input quantities (16) which are not reported in
reference [13]. In an exact calculation and in the harmonic approximation LRP should
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produce identical results as DFT. Small discrepancies of the order � ≈ 0.59 cm−1 are
due to the above mentioned small differences and uncertainties of input data.

4.3 Comparison of the DFT and LRP out-of-plane frequencies of (H,D)-benzene
isotopomers

Once benzene out-of-plane frequencies and vibrational amplitudes are known, this
uniquely determines out-of-plane frequencies and vibrations of all benzene isotopo-
mers. If one considers all possible (H,D) and (12C, 13C) combinations, there are few
hundreds of such isotopomers. If in addition one includes isotopomers that may contain
3H and 14C isotopes, one finds almost one hundred thousands of such isotopomers.
LRP produces with a single stroke vibrational frequencies and normal modes for all
those isotopomers. In this paper are considered only (H, D)-isotopomers shown in
Fig. 2. In Table 4 are compared LRP out-of-plane frequencies for 11 poly-deuterated
(H,D)-isotopomers with the DFT out-of-plane frequencies of those isotopomers. Ben-
zene vibrations as obtained with the choice ω1 = 393 cm−1 and ω3 = 622 cm−1

for d1-frequencies were used (see expressions 32). Once those vibrations are known,
expressions (4–6) determine all cardinal out-of-plane vibrations while expressions (8)
and (9) determine remaining strongly and weakly singular vibrations for all benzene
isotopomers. Concerning (H,D)-benzene isotopomers considered in Table 4, there are
only three strongly singular vibrations described by expressions (8), and no weakly
singular vibration. Those strongly singular vibrations correspond to frequencies ω2,
ω6 and ω8 of d2-benzene 1,4-C6D2H4. This isotopomer has two deuterium atoms at
positions H1 and H4. At those positions d0-benzene vibrations |�2〉, |�6〉 and |�8〉
have no amplitude (see Fig. 3). Accordingly, those vibrations are not effected by the
isotopic substitutions at positions H1 and H4. Therefore those d0-benzene vibrations
are strongly singular vibrations of d2-isotopomer 1,4-C6D2H4. As explained in the
previous section, those d0-benzene vibrations are also strongly singular d1-benzene
vibrations.

As shown in Table 4, LRP calculation practically reproduces much more sophis-
ticated DFT calculation. Standard deviation between two sets of data is on average
≈ 0.38 cm−1. The largest standard deviation (� = 0.62 cm−1) is obtained in the
case of d4-benzene 1,2,4,5-C6D4H2. Since in the reference [13] DFT frequencies are
reported to within ±0.5 cm−1, this error can be entirely attributed to the uncertainties
of input d0-and d1-frequencies, and to the small uncertainties in bond lengths (16a). In
conclusion, frequencies as obtained by the highly sophisticated DFT calculation can
be obtained much more efficiently and much easier within the LRP approach.

LRP frequencies of (H,D)-benzene isotopomers shown in Table 4, were derived
using amplitudes 〈H1|�1〉 = 0.30583 and 〈H1|�4〉 = 0.17971. Those amplitudes
were obtained from six DFT out-of-plane d0-frequencies and two DFT d1-frequencies
ω1 = 393 cm−1 and ω3 = 622 cm−1. One could equally well use other possible
amplitude choices shown in Table 2. All such choices produce more or less similar
results. A more systematic approach would be to derive amplitudes 〈H1|�1〉 and
〈H1|�4〉not from a particular choice (εk1, εk2) of two d1-benzene out-of-plane cardinal
frequencies, but rather from the condition that those amplitudes should minimize
deviation of LRP d1-frequencies from DFT d1-frequencies.
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Table 4 DFTa and LRPb frequencies of out-of-plane vibrations of d2-, d3-, d4-, d5- and d6-benzenes

3 4 5 6
1,2-C6D2H4 1,3-C6D2H4 1,4-C6D2H4 1,2,3-C6D3H3
� = 0.34 � = 0.23 � = 0.40 � = 0.28

C2v DFT a LRPb C2v DFT a LRPb D2h DFT a LRPb C2v DFT a LRPb

1 a2 384 383.89 a2 386 386.02 b1u 374 373.30 b2 383 383.05
2 b2 403 402.87 b2 402 401.83 au 414 414.00 a2 386 386.02
3 b2 591 590.81 b2 582 581.71 b1u 611 611.31 b2 558 558.10
4 a2 676 675.96 b2 714 714.12 b3g 648 647.61 b2 670 669.72
5 a2 782 782.58 a2 719 719.48 b3g 750 749.99 a2 719 719.48
6 b2 797 797.12 b2 830 830.19 b2g 865 865.00 b2 790 790.16
7 a2 900 900.25 a2 934 933.73 b1u 879 878.57 b2 840 840.53
8 b2 960 959.57 b2 934 934.07 au 974 974.00 a2 934 933.73
9 a2 998 998.61 b2 991 990.90 b3g 978 978.16 b2 991 990.88

7 8 9 10
1,2,4-C6D3H3 1,3,5-C6D3H3 1,2,3,4-C6D4H2 1,2,3,5-C6D4H2
� = 0.53 � = 0.36 � = 0.36 � = 0.38

Cs DFT a LRPb D3h DFT a LRPb C2h DFT a LRPb C2v DFT a LRPb

1 a′′ 370 369.24 e′′ 386 386.02 b2 368 367.78 b2 368 367.23
2 a′′ 400 399.16 e′′ 386 386.02 a2 384 383.70 a2 386 386.02
3 a′′ 573 573.13 a′′

2 545 545.16 b2 544 544.23 b2 537 537.14
4 a′ 647 646.16 a′′

2 714 714.11 a2 640 639.65 b2 646 645.81
5 a′′ 718 718.07 e′′ 719 719.48 a2 698 698.13 b2 718 717.73
6 a′′ 782 782.61 e′′ 719 719.48 b2 746 745.73 a2 719 719.48
7 a′′ 873 873.41 e′′ 934 933.73 a2 822 822.60 b2 810 810.33
8 a′′ 934 934.06 e′′ 934 933.73 b2 873 873.61 a2 934 933.73
9 a′ 976 976.13 a′′

2 934 934.74 a2 976 976.07 b2 934 934.44

11 12 13
1,2,4,5-C6D4H2 C6D5H C6D6
� = 0.62 � = 0.34 � = 0.41

D2h DFT a LRPb C2v DFT a LRPb D6h DFT a LRPb

1 au 361 360.54 a2 361 360.54 e2u 361 360.54
2 b1u 390 389.45 b2 376 375.41 e2u 361 360.54
3 b1u 560 559.63 b2 526 525.69 a2u 509 509.54
4 b3g 631 629.99 b2 628 627.43 b2g 615 614.31
5 b2g 673 672.90 a2 673 672.90 e1g 673 672.90
6 b3g 779 779.90 b2 719 718.90 e1g 673 672.90
7 au 791 791.16 a2 791 791.16 e2u 791 791.16
8 b1u 931 931.37 b2 825 825.14 e2u 791 791.16
9 b3g 936 936.87 b2 934 934.11 b2g 837 837.53

All frequencies in cm−1

a DFT frequencies. B3LYP/6-31G(d,p) calculation [13]
b LRP frequencies using six d0-benzene DFT cardinal frequencies (Table 1) and (cardinal) d1-benzene DFT
frequencies ω1 = 393 cm−1 and ω3 = 622 cm−1

4.4 Comparison of LRP frequencies with scaled DFT frequencies

Though vibrational analyze by the DFT method is quite sophisticated, it still produces
unsatisfactory agreement with experimental frequencies [13,20]. A general strategy
designed in order to improve DFT frequencies is scaling technique [13,20]. Key idea
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in this approach is to use several individual mode scaling factors which optimally
reproduce frequencies of the parent molecule A [13,20]. Since those scaling factors
improve frequencies of A, it is assumed that those same factors should improve fre-
quencies of all isotopomers B of A. Depending on the number of such scaling factors,
the agreement with experimental frequencies can be more or less improved [20]. In
general one can use two different scaling techniques; one can either scale theoretical
force field [20], or one can directly scale theoretical frequencies [13].

Wu and Cremer in addition to the (H,D)-benzene DFT frequencies reported also
scaled frequencies for those isotopomers [13]. They apply scaling technique to theore-
tical DFT benzene frequencies, and not to theoretical benzene force field. Those scaled
frequencies are obtained using individual scaling factors which accurately reproduce
all vibrational frequencies of benzene [13]. Since benzene has six mutually distinct
out-of-plane frequencies, six scaling factors are required in order to reproduce exactly
out-of-plane benzene frequencies. Of course, additional scaling factors are needed in
order to reproduce exactly remaining in-plane benzene frequencies [13].

Scaled benzene out-of-plane frequencies which exactly reproduce experimental
benzene frequencies are shown in Table 5. DFT out-of-plane scaled frequencies for
remaining 12 (H,D)-benzene isotopomers are compared with the corresponding LRP
frequencies in Table 6. Those LRP frequencies are derived in the following way: as
input frequencies of the system A, d0-benzene frequencies from Table 5, i.e. experi-
mental out-of-plane benzene frequencies are used. Concerning benzene amplitudes
〈H1|�1〉 and 〈H1|�4〉, the same amplitudes as in the Table 4 were used. This is
a hybrid approach where DFT theoretical d0-frequencies from Table 1 are repla-
ced with experimental d0-frequencies, while amplitudes 〈H1|�1〉 = 0.30583 and
〈H1|�4〉 = 0.17971 as derived using six DFT d0-frequencies and two DFT d1-
frequencies ω1 = 393 cm−1 and ω3 = 622 cm−1 are retained. Accordingly, those
amplitudes should agree with DFT benzene amplitudes. In a more consistent approach,
in order to derive amplitudes 〈H1|�1〉 and 〈H1|�4〉 one should use six experimen-
tal d0-frequencies and a choice of any two experimental d1-frequencies. Still better
approach is to use all available experimental (cardinal) d1-frequencies instead of only
two such frequencies, and to chose amplitudes 〈H1|�1〉 and 〈H1|�4〉 subject to the
condition that standard error of those input d1-frequencies is minimized. It is not
correct instead of experimental d1-frequencies to use scaled d1-frequencies. Scaling
technique based on the scaling of theoretical frequencies may lead to the violation
of the interlacing rule (10b), which rule is strictly satisfied in the LRP approach. For
example, if one compares scaled frequencies of (H,D)-benzene isotopomers 7 and 11
in Figure 2 (isotopomers 1,2,4-C6D3H3 and 1,2,4,5-C6D4H2) one finds (see Table 6)

347(11)1 < 356(7)1 < 375(11)2 < 385(7)2 < 582(11)3?556(7)3 <

621(11)4 < 637(7)4 < 658(11)5 < 702(7)5 < 762(11)6 < 765(7)6 <

785(11)7 < 867(7)7 < 915(11)8 < 927(7)8?924(11)9 < 954(7)9. (33)

There are two violations of the interlacing rule (10b) which are indicated with a
question mark. Particularly serious is the violation 582(11)3 ?556(7)3 which amounts
to 26 cm−1. It is highly unlikely that violation as large as 26 cm−1 is due to the
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Table 5 Scaled out-of-plane
benzene frequencies [13]

Those frequencies equal
experimental frequencies
[13,21]. All frequencies in cm−1

C6H6
D6h

1 e2u 398
2 e2u 398
3 a2u 673
4 b2g 707
5 e1g 846
6 e1g 846
7 e2u 967
8 e2u 967
9 b2g 990

anharmonicity effects. Both violations demonstrate that those scaled frequencies are
not consistent with harmonic approximation. Though anharmonicity effects can in
principle violate interlacing rule, each such violation, especially if it is large, is highly
suspicious and it very likely indicates erroneous frequencies which do not agree with
experiment [9]. Above example demonstrates that scaling technique which is based on
scaling of theoretical frequencies may be contaminated with implicit strong anharmo-
nicity assumptions. Since LRP is based on the harmonic approximation, it is not cor-
rect to use such scaled DFT frequencies as input in the LRP calculations. On the other
hand, scaled technique based on the force field scaling does not violate interlacing rule.
Modified problem involving modified force field is still within a harmonic approxima-
tion, and hence resulting frequencies should satisfy interlacing rule. Accordingly, on
theoretical grounds force field scaling is preferable to frequency scaling. Unfortuna-
tely, only (H,D)-benzene isotopomers scaled frequencies based on frequency scaling
were available [13]. Note finally that experimental frequencies can also violate the
interlacing rule. If this is the case, it indicated inadequacy of the LRP approach for the
particular problem. However, for this to happen anharmonicity effects must be quite
strong.

In conclusion, by its very nature scaling technique based on frequency scaling
violates harmonic approximation which is an essential part of the LRP approach.
Therefore, in the absence of the reliable experimental d1-frequencies and in the absence
of force field scaled frequencies, it is better to use amplitudes as obtained from DFT
d1-frequencies, which are by construction guaranteed to satisfy the interlacing rule.
Accordingly, in the derivation of LRP frequencies in Table 6 were used experimental
d0-frequencies and d0-amplitudes 〈H1|�1〉 and 〈H1|�4〉 as obtained from the DFT
(unscaled) six d0- and two d1-frequencies.

In Table 6 are also shown standard deviations of those LRP frequencies from
DFT scaled frequencies. On average those standard deviations are of the order � ≈
4.41 cm−1 which is substantially higher from standard deviations (� ≈ 0.38 cm−1)
of LRP frequencies from original DFT frequencies (Table 4). This illustrates qualita-
tive difference between original DFT frequencies which are in accord with harmonic
approximation and scaled DFT frequencies which violate this approximation.

In comparing LRP and scaled DFT frequencies an additional point should be
emphasized. With the exception of C6 D6, all remaining (H,D)-benzene isotopomers
have lower symmetry then benzene. Hence in order to obtain scaled frequencies of
those isotopomers one has to solve a nontrivial problem of pairing (H,D)-isotopomer
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Table 6 DFTa scaled frequencies and LRPb frequencies of out-of-plane vibrations of deuterated benzene

2 3 4 5
C6DH5 1,2-C6D2H4 1,3-C6D2H4 1,4-C6D2H4
� = 2.65 � = 3.90 � = 3.98 � = 2.06

C2v DFT a LRPb C2v DFT a LRPb C2v DFT a LRPb D2h DFT a LRPb

1 b2 378 378.02 a2 369 369.32 a2 371 371.33 b1u 360 359.21
2 a2 398 398.00 b2 387 387.43 b2 386 386.46 au 398 398.00
3 b2 603 605.28 b2 573 574.01 b2 564 565.75 b1u 592 593.77
4 b2 703 701.73 a2 666 665.11 b2 703 701.68 b3g 638 635.23
5 b2 775 775.45 a2 765 768.95 a2 703 705.81 b3g 734 736.26
6 a2 846 846.00 b2 780 778.69 b2 812 811.97 b2g 846 846.00
7 b2 927 922.08 a2 894 885.07 a2 927 919.31 b1u 873 870.02
8 a2 967 967.00 b2 953 951.70 b2 927 923.65 b3g 956 956.07
9 b2 980 983.32 a2 975 980.98 b2 968 975.72 au 967 967.00

6 7 8 9
1,2,3-C6D3H3 1,2,4-C6D3H3 1,3,5-C6D3H3 1,2,3,4-C6D4H2
� = 8.22 � = 4.65 � = 2.22 � = 3.98

C2v DFT a LRPb Cs DFT a LRPb D3h DFT a LRPb C2v DFT a LRPb

1 b2 379 368.54 a′′ 356 355.31 e′′ 371 371.33 b2 354 353.91
2 a2 382 371.33 a′′ 385 383.91 e′′ 371 371.33 a2 369 369.15
3 b2 541 542.06 a′′ 556 556.62 a′′

2 528 530.01 b2 528 528.21
4 b2 656 658.98 a′ 637 633.86 a′′

2 703 701.67 a2 630 628.18
5 a2 706 705.81 a′′ 702 704.63 e′′ 703 705.81 a2 683 684.52
6 b2 775 774.40 a′′ 765 769.00 e′′ 703 705.81 b2 730 732.74
7 b2 841 825.48 a′′ 867 861.11 a′′

2 913 913.15 a2 816 809.52
8 a2 935 923.65 a′′ 927 919.32 e′′ 927 923.65 b2 867 861.76
9 b2 973 975.32 a′ 954 962.13 e′′ 927 923.65 a2 954 961.74

10 11 12 13
1,2,3,5-C6D4H2 1,2,4,5-C6D4H2 C6D5H C6D6
� = 2.56 � = 13.07 � = 4.48 � = 1.09

C2v DFT a LRPb D2h DFT a LRPb C2v DFT a LRPb D6h DFT a LRPb

1 b2 354 353.39 au 347 346.97 a2 347 346.97 e2u 347 346.97
2 a2 371 371.33 b1u 375 374.69 b2 363 361.22 e2u 347 346.97
3 b2 521 521.66 b1u 582 542.97 b2 510 510.06 a2u 494 494.12
4 b2 636 633.49 b3g 621 618.60 b2 618 616.21 b2g 606 603.64
5 b2 702 704.34 b2g 658 658.12 a2 658 658.12 e1g 658 658.12
6 a2 703 705.81 b3g 762 764.65 b2 703 705.31 e1g 658 658.12
7 b2 804 800.07 au 785 784.63 a2 785 784.63 e2u 785 784.63
8 b2 913 916.40 b3g 915 915.92 b2 819 811.39 e2u 785 784.63
9 a2 927 923.65 b1u 924 923.52 b2 913 923.52 b2g 818 820.21

All frequencies in cm−1

a Scaled DFT frequencies. B3LYP/6-31G(d,p) calculation [13]
b LRP frequencies obtained using six d0-benzene experimental frequencies and amplitudes 〈H1|�1〉 =
0.30583 and 〈H1|�4〉 = 0.17971

frequencies with frequencies of the parent benzene molecule. This pairing requires
a rather sophisticated method involving stepwise mass increments which in many
small steps transform parent benzene molecule into the corresponding benzene iso-
topomer [13]. This procedure might work in the particular case of benzene, but it is
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not general and there is always a possibility of serious problems due to mass reaction
paths crossings. In any case, this is a highly artificial procedure, and computationally
quite demanding, since the calculation should be repeated in many points along the
mass reaction path [13]. In comparison, LRP has no such problem. Each cardinal
out-of-plane vibration of the particular (H,D)-isotopomer is obtained using expres-
sions (4–9), and the only deference is that in those expressions DFT d0-frequencies
from Table 1 are replaced with experimental d0-frequencies from Table 5. There is no
need for pairing (H,D)-benzene isotopomer frequencies with frequencies of a parent
benzene molecule, since all cardinal frequencies of those isotopomers are obtained
directly from the roots of the expression (5c). It remains to find out how well LRP
frequencies agree with experimental frequencies.

4.5 Comparison of LRP and scaled DFT frequencies with experimental frequencies

LRP and scaled DFT frequencies are compared with experimental frequencies in
Table 7. Standard deviations of LRP as well as of scaled DFT frequencies from expe-
rimental frequencies are also shown. There are no experimental frequencies for all
(H,D)-benzene isotopomers. In Ref. [13], in addition to d0-benzene frequencies shown
in Table 5, the authors report only experimental frequencies for C6(HD)3 and C6D6
benzene isotopomers [13,21]. As shown in Table 7, in the case of the isotopomer
C6(HD)3, standard deviation of LRP out-of-plane frequencies from experimental fre-
quencies is �LRP = 2.78 cm−1, while standard deviation of scaled DFT out-of-plane
frequencies from experimental frequencies is �DFT = 4.04 cm−1. In the case of ben-
zene isotopomer C6D6 one finds �L R P = 3.78 cm−1 and �DFT = 4.69 cm−1. In
both cases LRP frequencies are in much better agreement with experimental frequen-
cies then DFT scaled frequencies. Note that original (non-scaled) DFT frequencies
shown in Table 4 have substantially bigger error then scaled DFT frequencies. In the
case of isotopomer C6(HD)3, this error is �DFT = 14.39 cm−1, while in the case of
benzene isotopomer C6D6 this error is �DFT = 12.34 cm−1. In both cases scaling
technique substantially reduces experimental error: in the former case from �DFT =
14.39 cm−1 to �DFT = 4.04 cm−1 and in the latter case from �DFT = 12.34 cm−1

to �DFT = 4.69 cm−1. However, in both cases resulting errors are still bigger then
the corresponding LRP errors.

In Table 7 are also compared LRP and scaled DFT out-of-plane frequencies with
experimental frequencies for C6DH5, 1,4-C6D2H4 and 1,2,4,5-C6D4H2 benzene iso-
topomers. Those experimental frequencies are taken from ref. [3]. In all cases consi-
dered, except in the case of 1,4-C6D2H4 isotopomer, LRP frequencies are in better
agreement with experimental frequencies from scaled DFT frequencies. In the case
of 1,4-C6D2H4 isotopomer one finds �L R P = 5.72 cm−1 and �DFT = 5.69 cm−1.
Scaled DFT out-of-plane frequencies are in this case only marginally better then LRP
frequencies. It is very likely that this is not due to presumably better performance
of DFT, but rather to relatively unreliable experimental frequencies in this particular
case. On average, considering all five (H,D)-benzene isotopomers shown in Table 7,
one has �L R P ≈ 4.74 cm−1 and �DFT ≈ 6.79 cm−1. This shows that, as far as avai-
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lable experimental frequencies are considered, LRP frequencies are superior to the
scaled DFT frequencies.

5 Conclusions

Vibrational isotope effect was analyzed by the Low rank perturbation (LRP) method.
LRP treatment of this effect is based on the harmonic approximation and on the
assumption (consistent with the Born-Oppenheimer approximation) that if the parent
molecule A is replaced by an isotopomer B, force field does not change. Within those
approximations LRP is exact.

In a present paper out-of-plane vibrations of benzene (H,D)-isotopomers were
considered. One finds that LRP reproduces DFT frequencies with high precision.
Virtual equality of DFT and LRP results is due to the fact that DFT approach (which
was used in those calculations [13]) is also consistent with the above approximations.
Small discrepancies in calculated vibrational frequencies of the order ≈ 0.38 cm−1

are entirely due to the uncertainties (≈ 0.5 cm−1) of the reported DFT frequencies
[13], and to possible small differences in input benzene geometry and atomic masses
of carbon, hydrogen and deuterium atoms. A standard method used to improve DFT
frequencies is a scaling technique [13,20]. There are two ways how one can apply this
technique: one can scale either theoretical force field [20] or on can scale theoretical
frequencies [13]. Applying six scaling factors to DFT theoretical frequencies one can
exactly reproduce benzene out-of-plane frequencies, and those same scaling factors
are expected to improve out-of-plane frequencies of all benzene (H,D)-isotopomers
[13]. One finds that LRP out-of-plane frequencies (obtained using experimental d0-
frequencies as input data) differ from such DFT scaling frequencies [13] on average
with a standard deviation � ≈ 4.41 cm−1. This is significant and it is due to the
fact that scaled DFT frequencies based on frequency scaling may violate harmonic
approximation. On the other hand, harmonic approximation is strictly obeyed by the
LRP approach. Within this approach is derived interlacing rule [7–9] which generalizes
well known order rule [3]. Each violation of the interlacing rule indicated violation of
the harmonic approximation. Though anharmonicity effects may in principle violate
this rule, those effects are usually small and hence violation of this rule should be
also small. However, in the case of benzene (H,D)-isotopomers some violations of the
harmonic approximation by the DFT scaled frequencies are as large as ≈ 26 cm−1

[8]. This almost certainly indicated scaled frequencies which are in error [8].
Concerning comparison with experiment, one finds that standard deviation of LRP

frequencies from available experimental frequencies is on average �L R P≈4.74 cm−1,
while standard deviation of DFT scaled frequencies from the same experimental fre-
quencies is on average �DFT ≈ 6.79 cm−1. This shows that DFT scaled frequencies
based on frequency scaling are less reliable from LRP frequencies. Since DFT scaled
frequencies based on force field scaling do not violate interlacing rule, such scaled
frequencies are expected to have a better agreement with experimental frequencies.
Unfortunately, those scaled frequencies were not available [13].

In the present paper vibrational isotope effect of out-of-plane vibrations of planar
molecules was considered and illustrated with a particular example of benzene (H,D)-
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isotopomers. However, LRP equally well applies to in plane vibrations of planar mole-
cules as well as to vibrational isotope effect of arbitrary (non-planar) molecules. This
includes not only (H,D)-, but all other possible isotopomers [7,8]. In all those cases
LRP is computationally much simpler than DFT. For example, in the case of out-of-
plane vibrations, LRP essentially involves solution of the ρ × ρ matrix Eq. 5a (where
ρ is the number of isotope substitutions), while DFT involves solution of the n × n
matrix Eq. 3a (where n is the number of all atoms in the isotopomer B). In addition, if
one wants to improve DFT frequencies with scaling technique, one has to introduce
one or several adjustable parameters (scaling factors). Of course, if one increases the
number of such parameters one can improve agreement with experimental frequen-
cies. However, such a technique is in principle not very clean, since those parameters
have no clear theoretical basis. On the other hand, without any introduction of such or
similar adjustable parameters, LRP frequencies agree with experimental frequencies
(at least in the case considered) better than scaled DFT frequencies.

LRP provides a new conceptual insight into the regularities of the vibrational isotope
effect in the harmonic approximation. Within the LRP formalism one can show that
frequencies ωk and vibrations |�k〉 of isotopomer B depend mainly on local properties
involving region subject to the isotopic substitution. The only global properties needed
to obtain frequencies and normal modes of the isotopomer B are frequencies νi of the
parent molecule A. All remaining quantities refer to the region subject to the isotopic
substitution: amplitudes 〈τ s|�i 〉 of the vibrations |�i 〉 of the parent molecule A at
the positions of isotopic substitutions and information about substituted isotopes τ ,
their coordinate positions (xτ , yτ , zτ ) and mass changes �mτ . There are also four
apparently global quantities, molecular mass M and moments of inertia Ix , Iy and Iz

of a parent molecule A. However, those quantities can be expressed in terms of the
local properties: amplitudes

〈
τ s|�T p

〉
and

〈
τ s|�Rp

〉
of non-proper vibrations

∣∣�T p
〉

and
∣∣�Rp

〉
at any position subject to the isotopic substitution. Therefore frequencies νi

of the parent molecule A remain as the only global properties required. No information
about amplitudes 〈αs|�i 〉 of the vibrations |�i 〉 at atoms α that are not substituted
by an isotope is needed. Also no information about force field is needed. This shows
that frequencies and vibrations of the isotopomer B do not depend on any fine details
of molecular structure outside the region affected by the isotopic substitution. Huge
amount of data which is usually needed in order to calculate vibrational isotope effect
in a standard way, such as force field constants for the entire molecule, is hence
redundant.

It is not important how frequencies νi and amplitudes 〈τ s|�i 〉 of the parent mole-
cule A are obtained in the LRP approach. Those quantities can be obtained from some
reliable independent theoretical calculation. But also, and more important, those quan-
tities can be obtained from the experimental data alone. In the case of out-of-plane
vibrations it is sufficient to know experimental frequencies of the parent molecule
A, and few selected experimental frequencies of mono-substituted isotopomers Bτ .
Those quantities are sufficient to reconstruct required vibrational amplitudes of the
parent molecule A. In particular, in the case of vibrational isotope effect of out-of-plane
vibrations of benzene isotopomers, it is sufficient to know six experimental out-of-
plane d0-benzene frequencies and only two experimental out of plane d1-benzene
frequencies. Those experimental quantities, in conjuncture with benzene geometry
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and masses and positions of various possible isotopes, uniquely determine out-of-
plane frequencies and corresponding vibrations of all benzene isotopomers. If one
considers all possible isotopomers containing 1H, 2H, 3H, 12C, 13C and 14C isotopes,
there are almost one hundred thousands of such benzene isotopomers. It is remarkable
that frequencies and normal modes of all those isotopomers are completely determined
(within the harmonic approximation) by so few experimental data.

In conclusion, LRP approach provides a new insight in the nature of the vibrational
isotope effect in the harmonic approximation, it is conceptually and computationally
simple, and in addition it produces (at least in the examples considered) better agree-
ment with experimental frequencies then DFT improved with scaling technique.

Acknowledgement This work was supported in part by Grant No. 098-0982915-2942 of the Ministry of
Science, Education and Sports of Croatia.

Appendices

A Vibrational isotope effect in the harmonic approximation

In the harmonic approximation vibrations of a molecule A consisting of n atoms
connected by harmonic forces can be described by the generalized eigenvalue equation
2a where F and M are force field and mass operators, respectively. If in the original
molecule A some or all atoms are replaced by an isotope, to a very high degree of
accuracy force field is not effected by those replacements [1,3,4]. In this approximation
vibrations of the isotopomer B are described by the eigenvalue equation 3a where �M
represents isotope mass changes.

We will use Greek letters α and β in order to label different atoms, and indices
s and p in order to denote x-, y- and z-coordinate directions. Using this convention
operators F and M can be written in the form

F =
n∑

αβ

3∑

sp

fαs,βp |αs〉 〈βp|, M =
n∑

α

mα

3∑

s

|αs〉 〈αs|, (A1a)

where fαs,βp are force constants and where |αs〉 are ket vectors which denote a unit
displacement of α-th atom in the s-th coordinate direction. Those unit displacements
are orthonormalized and complete in the molecular vibrational space X3n

〈αs|βp〉 = δαβδsp,
∑

αs

|αs〉 〈αs| = I, (A1b)

We will label atoms that are affected by isotope substitution with Greek letters µ

and τ . If there are ρ such atoms, mass change operator �M can be written in the form

�M =
ρ∑

µ

�mµ

3∑

s

|µs〉 〈µs|. (A1c)
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where �mµ is isotope mass change of atom µ. Accordingly, in a base {|αs〉} operator
�M effects only 3ρ base vectors |µs〉. Those vectors span a 3ρ dimensional isotope
substitution space Xb

3ρ , subspace of a vibrational space X3n . If ρ < n, which is usually

the case, the space Xb
3ρ can be substantially smaller than the space X3n .

B LRP treatment of the vibrational isotope effect

Vibrational isotope effect can be efficiently treated within the formalism of the low
rank perturbation (LRP) approach [5–7]. This is a general mathematical method which
gives a solution of a system B in terms of a known solution to a “reference” system
A. In general, the system A is described by the generalized eigenvalue equation

A |�i 〉 = λi S |�i 〉 , (B1a)

while the system B is described by the generalized eigenvalue equation

B |�k〉 = εkC |�k〉 . (B1b)

One can consider system B as “modified” system A where B = A + V and C = S + P.
The system B differs from the system A by the operators (V, P). Quantities A, S, V and
P can be any operators. In particular, those operators are not necessarily Hermitian [5]
and they can be also infinite dimensional [6]. The only restriction to the generality of
the LRP approach is that the ranks of operators V and P which represent modification
of the system A should be finite and preferably small. Hence the name “Low rank
perturbation” (LRP) [5,6].

In the LRP approach the solution (eigenvalues εk and eigenstates |�k〉) of the sys-
tem B are expressed in terms of the solution (eigenvalues λi and eigenstates |�i 〉) of
the system A [5–7]. In this respect LRP is similar to a standard perturbation expansion
approach which also expresses each perturbed solution in terms of the (presumably
known) unperturbed eigenstates and eigenvalues. However, unlike the standard per-
turbation approach, LRP does not rely on a power series expansion, and it produces
correct results, however strong the “perturbation” (V, P). Numerical complexity of
the LRP solution does not depend on the magnitude of this “perturbation”, but rather
on the ranks of the operators V and P. In particular, this numerical complexity is
essentially independent on the dimension of the systems A and B. Hence one can with
the LRP approach treat even infinite-dimensional [6] systems, as long as rank of the
operator V as well as rank of the operator P is finite.

Expressions (2a) and (3a) describing vibrational isotope effect in the harmonic
approximation are a special case of a general type of problems that can be treated by
the LRP method. LRP solution of the perturbed system B described by eigenvalue
equation 3a is given elsewhere [7,8] and only main results will be presented here.
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Define 3ρ × 3ρ Hermitian matrices �(ε) and �M. Matrix �(ε) depends on a real
parameter ε and it has matrix elements

�µs,τp(ε) =
3n∑

i(λi �=ε)

〈µs|�i 〉 〈�i |τp〉
ε − λi

, µ, τ = 1, . . . , ρ, s, p = 1, 2, 3.

(B2a)

In this expression λi are eigenvalues of the eigenvalue equation 2a, while |�i 〉 are
the corresponding eigenstates orthonormalized according to (2b). The summation is
performed over all i such that λi �= ε. In particular, if ε /∈ {λi } this summation is
performed over all 3n terms.

Matrix �M is a representation of the mass change operator (A1c) in the base {|µs〉}
of the isotope substitution space Xb

3ρ . It has matrix elements

�Mµs,τp = δµτ δsp�mτ , µ, τ = 1, . . . , ρ, s, p = 1, 2, 3. (B2b)

Above we have used the same symbol �M for the operator (A1c) as well as for the
representation of this operator in the base {|µs〉}. Strictly, this is not allowed and one
should use two different symbols for the operator �M and for its representation in
some basis. However, from the context it is usually always clear whether �M refers
to the operator or to its representation. Hence, with a due caution, one can use such
slightly inaccurate notation.

In the LRP approach one distinguishes cardinal (εk /∈ {λi }) and singular (εk ∈ {λi })
eigenvalues and eigenstates of the system B [6–8]. Concerning cardinal solutions one
finds [7,8].

Theorem 1 (cardinal frequencies and vibrations) Let (2a) be eigenvalue equation
describing harmonic vibrations of a parent molecule A. Let further the corresponding
vibrations |�i 〉 be orthonormalized according to (2b). Then:

(a) εk /∈ {
λ j

}
is (cardinal) eigenvalue of the isotope eigenvalue equation 3a descri-

bing isotopomer B if and only if ε = εk satisfies matrix equation

H(εk)C(k) = 0, (B3a)

where H(ε) is a Hermitian matrix

H(ε) ≡ �(ε) + �M−1

ε
, (B3b)

In this expression �M−1 is a 3ρ × 3ρ diagonal matrix, inverse of a matrix �M. It
has matrix elements

�M−1
µs,τp = δµτ δsp

�mτ

, µ, τ = 1, . . . , ρ, s, p = 1, 2, 3. (B3c)
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Expression (B3a) has a nontrivial solution (C(k) �= 0) if and only if determinant
of the system vanishes. All cardinal eigenvalues εk /∈ {λi } of B are hence roots of a
function f (ε):

f (ε) ≡ |H(ε)| = 0. (B4)

where |H(ε)| is determinant of H(ε).
(b) Each vibration |�k〉 that corresponds to the eigenvalue εk /∈ {λi } of B is a linear

combination

|�k〉 =
3n∑

i

∑ρ
τ

∑3
p 〈�i |τp〉C (k)

τp

εk − λi
|�i 〉, (B5a)

where the coefficients C (k)
τp are the components of a 3ρ-dimensional column vector

C(k), eigenvector of the matrix Eq. B3a.
(c) Coefficients C (k)

τp that determine vibration |�k〉 according to (B5a) satisfy [7,8]

C (k)
τp = −εk 〈τp|�M |�k 〉 = −εk�mτ 〈τp|�k〉 ,

τ = 1, . . . , ρ, p = 1, 2, 3. (B5b)

(d) Degeneracy of the eigenvalue εk /∈ {
λ j

}
of B equals the number of the linearly

independent eigenvectors C(k) of the matrix Eq. B3a. In other words, this degeneracy
equals nullity of the matrix H(εk).

As far as cardinal eigenvalues and eigenstates are considered, LRP replaces eigen-
value equation 3a acting in the 3n-dimensional vibration space X3n with the (usually
much simpler) matrix equation (B3) acting in the 3ρ-dimensional isotope substitution
space Xb

3ρ .
Concerning singular solutions of the eigenvalue equation 3a one has the following

Theorem 2 (singular frequencies and vibrations) Let λ j be a η j -degenerate eigen-
value of the parent molecule A and let

∣∣� jl
〉

(l = 1, . . . , η j ) be the corresponding
vibrations orthonormalized according to (2b). Then

(a) Eigenvalue εk ≡ λ j ∈ {λi } is (singular) eigenvalue of the isotopomer B if and
only if it satisfies

[
H(λ j ) W( j)/λ j

W( j)T
/λ j 0

] (
C( j)

D( j)

)
= 0, (B6a)

where H(ε) is a 3ρ×3ρ Hermitian matrix (B3b), W( j) is a 3ρ×η j matrix with matrix
elements

W j
τ s,l = −

〈
τ s|�M−1

∣∣� jl

〉
= − 1

�mτ

〈
τ s|� jl

〉
,

τ = 1, . . . , ρ, s = 1, 2, 3, l = 1, . . . , η j . (B6b)
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while 0 is a η j × η j null matrix. Further, W( j)T is a transpose of W( j). Equation B6a
is hence Hermitian.

Since (B6a) has a nontrivial solution (either C( j) �= 0 and/or D( j) �= 0) if and
only if determinant of this system vanishes, εk ≡ λ j is a singular eigenvalue of the
eigenvalue equation 3a if and only if it satisfies f (λ j ) = 0 where

f (λ j ) ≡
∣∣∣∣
H(λ j ) W( j)/λ j

W( j)T/λ j 0

∣∣∣∣ . (B7)

(b) Each vibration |�k〉 corresponding to the singular eigenvalue εk ≡ λ j is a linear
combination

|�k〉 =
3n∑

i(λi �=λ j )

∑ρ
τ

∑3
s 〈�i |τ s〉 C ( j)

τ s

εk − λi
|�i 〉 +

η j∑

l

D( j)
l

∣∣� jl
〉
, (B8a)

where the coefficients C ( j)
τ s are components of a 3ρ column vector C( j), where

coefficients D( j)
l are components of a η j column vector D( j), and where those vectors

satisfy (B6a).
(c) Coefficients C ( j)

τ s and D( j)
l that determine singular vibration |�k〉 according to

(B8a) satisfy

C ( j)
τ s = −εk 〈τ s|�M |�k 〉 = −εk�mτ 〈τ s|�k〉 , D( j)

l = 〈
� jl

∣∣ M |�k〉 ,

τ = 1, . . . , ρ, s = 1, 2, 3, l = 1, . . . , η j . (B8b)

In the original LRP treatment of the vibrational isotope effect two kinds of singular
eigenvalues were considered, active and passive [8]. By definition, singular eigenvalue
εk ≡ λ j is passive if all amplitudes

〈
τ s|� jl

〉
(l = 1, . . . , η j ) vanish on all sites τ

subject to the isotopic substitution. Otherwise it is active. In other words, εk ≡ λ j

is passive if and only if no vibration
∣∣� jl

〉
(l = 1, . . . , η j ) has a component in the

isotope substitution space Xb
3ρ . Accordingly, all those vibrations are in the nullspace

of the operator �M:

�M
∣∣� jl

〉 = 0, l = 1, . . . , η j . (B9)

Passive eigenvalue is an exotic theoretical possibility which is extremely unlikely.
More in line with a general LRP approach and more convenient is to distinguish
strongly singular and weakly singular vibrations [7,8]. By definition, vibration |�k〉
is strongly singular if C( j) = 0, otherwise it is weakly singular. Expressions (B8b)
imply that strongly singular vibrations have no component in the vibrational isotope
space Xb

3ρ , while each weakly singular vibration has at least one nonzero component
in this space.
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According to Theorem 2, each strongly singular vibration |�k〉 associated with the
eigenvalue εk ≡ λ j is a linear combination

|�k〉 =
η j∑

l

D( j)
l

∣∣� jl
〉
, (B10a)

where the coefficients D( j)
l are components of a vector D( j), nontrivial solution of the

matrix equation

W( j)D( j) = 0, (B10b)

This equation is much simpler than the original Eq. B6a. Using (B6b) this equation
can be written in the explicit form

η j∑

l

〈
µs|� jl

〉
D( j)

l = 0, µ = 1, . . . , ρ, s = 1, 2, 3. (B10c)

This is a set of 3ρ homogenous linear equations in η j unknowns D( j)
l . Hence if

η j > 3ρ, isotopomer B has at least η j − 3ρ strongly singular vibrations with the
eigenvalue εk ≡ λ j . An extreme case is the case when εk = λ j is passive. In this case
all matrix elements

〈
µs|� jl

〉
in (B10c) vanish and one has maximum number of η j

strongly singular eigenstates. However, this is a very unlikely possibility, and unless
isotopomer B has some appropriate symmetry, if η j ≤ 3ρ this isotopomer has usually
no strongly singular vibration with the eigenvalue εk = λ j .

As emphasized above, each strongly singular vibration |�k〉 satisfies 〈τ s|�k〉 = 0
for each |τ s〉 ∈ Xb

3ρ . Hence no atom subject to the isotopic substitution participates
in the strongly singular vibration.

According to (B10a), each strongly singular vibration of the isotopomer B is a
linear combination of those vibrations

∣∣� jl
〉
of the parent molecule A that correspond

to the same (usually degenerate) frequency ν j .
Consider now weakly singular vibrations that satisfy C( j) �= 0. According to theo-

rem 2, each such vibration is a linear combination (B8a) where vectors C( j) and D( j)

satisfy:

W( j)T C( j) = 0, H(λ j )C( j) + W( j)

λ j
D( j) = 0, C( j) �= 0. (B11)

First expression in (B11) is a set of η j homogenous linear equations in 3ρ unknowns

C ( j)
τp , while second expression in (B11) is a set of 3ρ homogenous linear equations in

(3ρ + η j ) unknowns; 3ρ coefficients C ( j)
τp and η j coefficients D( j)

l . Accordingly, one
has 3ρ+η j unknowns and 3ρ+η j homogenous linear equations. There are additional
two conditions on those unknowns: First, there is a condition C( j) �= 0 which excludes
trivial solutions to W( j)T C( j) = 0. Second, each weakly singular vibration should
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be orthogonal to all strongly singular vibrations. Those orthogonality requirements
result in additional constrains on the coefficients D( j)

l . In view of so many conditions
on the linear expressions (B11), it is highly unlikely for those expressions to have
any nontrivial solution. Only exceptionally isotopomer B can have a weakly singular
vibration. This is also evident from a physical point of view. Since C( j) �= 0 and due
to (B8b), each weakly singular vibration has a non-vanishing component on at least
one atom involved in the isotopic substitution. It is highly unlikely that the presence of
this atom which participates in the vibration of isotopomer B will effect the frequency
of this vibration exactly in such a way that modified frequency εk coincides with some
frequency λi of a parent molecule A.

According to the expressions (B5a) and (B8a), each vibration |�k〉 of isotopomer
B is expressed as a linear combination of vibrations |�i 〉 of the parent molecule A.
Note further that the original Eq. 3a is a 3n × 3n eigenvalue equation, while LRP
Eq. B3a that produces cardinal vibrations of (3a) is a 3ρ × 3ρ eigenvalue equation.
Concerning singular vibrations, most important are strongly singular vibrations which
are obtained according to expressions (B10). In particular, expression (B10c) is a set of
η j homogenous linear equations where η j is degeneracy of the unperturbed eigenvalue
λ j . This is trivial to solve, especially if η j is relatively small, which is usually the
case. Since in most cases ρ � n, LRP approach presents a substantial reduction in
the computational load.

C Non-proper vibrations

Theorems 1 and 2 are valid provided vibrations |�i 〉 of the parent molecule A are
orthonormalized according to (2b). If two such vibrations have different frequencies,
they are automatically orthogonal to each other, and one has only to normalize these
vibrations, which is trivial. The problem is more complex if some of those vibrations
are degenerate, since degenerate vibrations are not automatically orthogonal to each
other. In this case one has to choose such linear combinations of degenerate vibrations,
which satisfy orthogonality relations (2b). In general, it is not known in advance which
vibrations will be degenerate, and this depends on a particular problem. However,
there are always six (in the case of nonlinear molecules) or five (in the case of linear
molecules) non-proper vibrations which are degenerate and which correspond to the
eigenvalue λ0 = 0 and frequency ν0 = 0. These non-proper vibrations describe three
translation and three (two) rotations.

Denote the three non-proper vibrations which describe translations in the x-,
y- and z-direction with |�T s〉 (s = 1, 2, 3) and the three non-proper vibrations which
describe rotations around x-, y- and z-axis with |�Rs〉 (s = 1, 2, 3). Normalized
non-proper vibrations |�T s〉 (translations) are [7]:

|�T s〉 = 1√
M

n∑

α

|αs〉, s = 1, 2, 3, (C1a)

while normalized non-proper vibration |�R3〉 ≡ |�Rz〉 (rotation around z-axis) is

123



J Math Chem (2009) 45:1060–1101 1099

|�Rz〉 = 1√
Iz

n∑

α

[xα |αy〉 − yα |αx〉], (C1b)

and cyclically for the remaining two non-proper vibrations |�R1〉 ≡ |�Rx 〉 and
|�R2〉 ≡ ∣∣�Ry

〉
. In the above expressions M = ∑

α mα is a molecular mass of
molecule A, Iz is a moment of inertia of this molecule around z-th coordinate axis,
while xα and yα are x- and y-coordinates of atom α, respectively.

Non-proper vibrations (C1) are normalized. However, those vibrations are in gene-
ral not mutually orthogonal. Concerning mutual orthogonality of those vibrations one
has [7].

Lemma 1 Let the origin of the coordinate system be in the centre of mass of a molecule
A, and let coordinate axis coincide with the principal axis of this molecule. In this
case non-proper vibrations (C1) satisfy orthonormality relations (2b):

〈
�T s |M

∣∣�T p
〉 = 〈

�Rs |M
∣∣�Rp

〉 = δsp,〈
�T s |M

∣∣�Rp
〉 = 0, s, p = 1, 2, 3. (C2a)

In this paper we assume that besides translations and rotations there are no other non-
proper vibrations. In other words, there are no such modes as free rotation around some
molecular axis, etc. If this is the case and if the molecule is nonlinear (most important
case) it has exactly 3n − 6 proper vibrations |�i 〉 and six non-proper vibrations |�T s〉
and |�Rs〉 (s = 1, 2, 3). Since all proper vibrations |�i 〉 have nonzero frequency, they
are automatically orthogonal to all non-proper vibrations:

〈�T s |M |�i 〉 = 〈�Rs |M |�i 〉 = 0, i = 1, . . . , 3n − 6, s = 1, 2, 3. (C2b)

Using (C1), expression (B5a) for the cardinal vibration |�k〉 can be written in a
more explicit form

|�k〉 = 1

εk

[
3∑

s

T (k)
s |�T s〉 +

3∑

s

R(k)
s |�Rs〉

]

+
3n−6∑

i

∑ρ
τ

∑3
s 〈�i |τ s〉 C (k)

τ s

εk − λi
|�i 〉, (C3a)

where the coefficients T (k)
s and R(k)

x are

T (k)
s = 1√

M

ρ∑

τ

C (k)
τ s , R(k)

x = 1√
Ix

ρ∑

τ

[
yτ C (k)

τ z − zτ C (k)
τ y

]
. (C3b)

Remaining two coefficients R(k)
y and R(k)

z are obtained cyclically from the coeffi-

cient R(k)
x .
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In the same way matrix elements (B2a) can be written in the explicit form

�µx,τ x (ε) = 1

ε

[
1

M
+ yµyτ

Iz
+ zµzτ

Iy

]
+

3n−6∑

i(λi �=ε)

〈µx |�i 〉 〈�i |τ x〉
ε − λi

, (C4a)

�µx,τ y(ε) = − xτ yµ

ε Iz
+

3n−6∑

i(λi �=ε)

〈µx |�i 〉 〈�i |τ y〉
ε − λi

. (C4b)

Remaining matrix elements �µy,τ y , �µz,τ z , �µy,τ z and �µz,τ x are obtained by a
cyclic substitution in expressions (C4).

Note that vibrations (C3) are not normalized. This can be easily done using ortho-
normality (2b) and matrix elements

〈
�i |�M

∣∣� j
〉 =

ρ∑

µ

�mµ

3∑

s

〈�i |µs〉 〈
µs|� j

〉
. (C5)

All quantities in this expression refer to the region subject to the isotopic substitu-
tion. Accordingly, in order to normalize vibrations (C3) no specific information about
molecules A and B outside the region subject to the isotopic substitution is needed.

Concerning singular solutions, as emphasized above most important are strongly
singular vibrations. Each such vibration is a linear combination (B10a) which contains
no non-proper vibration (C1). This also follows from physical reasons. Since strongly
singular vibration has no component in the isotope substitution space Xb

3ρ , there is
no need to compensate for the introduction of isotopes in the parent molecule A by
inclusion of non-proper vibrations. Strongly singular vibration |�k〉 of isotopomer B is
hence at the same time vibration of the parent molecule A. Since each strongly singular
vibration has no component on the isotopic substitution space Xb

3ρ , normalization of
those vibrations is trivial.
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